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Integrating visual cues for motor control: A matter of time
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Abstract

The visual system continuously integrates multiple sensory cues to help plan and control everyday motor tasks. We quantified

how subjects integrated monocular cues (contour and texture) and binocular cues (disparity and vergence) about 3D surface orien-

tation throughout an object placement task and found that binocular cues contributed more to online control than planning. A tem-

poral analysis of corrective responses to stimulus perturbations revealed that the visuomotor system processes binocular cues faster

than monocular cues. This suggests that binocular cues dominated online control because they were available sooner, thus affecting

a larger proportion of the movement. This was consistent with our finding that the relative influence of binocular information was

higher for short-duration movements than long-duration movements. A motor control model that optimally integrates cues with

different delays accounts for our findings and shows that cue integration for motor control depends in part on the time course

of cue processing.
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1. Introduction

The past decade has been a period of intense research

focused on understanding how the brain integrates

three-dimensional information about the world from

different sensory cues (Ernst & Banks, 2002; Hillis,

Ernst, Banks, & Landy, 2002; Jacobs, 1999; Knill &

Saunders, 2003; Landy, Maloney, Johnston, & Young,

1995; Saunders & Knill, 2001). Existing studies have fo-
cused almost exclusively on perceptual judgments of 3D

object properties, but the primary reason for producing

accurate estimates of these properties is to control motor

behavior. Picking up an object, putting an object on a

surface, and hammering a nail are all examples of every-

day motor behaviors that require integrating informa-
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tion from multiple cues to generate accurate visual
estimates of object size, shape, position, and orientation.

A central issue in sensory processing as it pertains to

motor control is how the brain accumulates and uses

sensory information over time. Perceptual studies of

cue integration, largely because they rely on discrete

judgments, have treated sensory estimation as a static

process. Goal-directed hand movements, however, occur

over time spans that are sufficiently short (typically less
than a second) for the temporal properties of cue inte-

gration to impact how different cues contribute to the

control of motor acts. How the brain integrates visual

information over time significantly impacts the roles

that different cues play in online control.

Previous results have shown that monocular cues

provided by texture and the outline shapes of figures

can be as reliable as or more reliable than binocular cues
to 3D surface orientation (Hillis, Watt, Landy, & Banks,

2004; Knill & Saunders, 2003; Saunders & Knill, 2001).
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Moreover, subjects are almost as accurate at orienting

an object for placement on a slanted surface when such

cues are presented monocularly as when they are pre-

sented binocularly (Knill & Kersten, 2004). We there-

fore used an object placement task to assess how the

brain integrates binocular and monocular cues to 3D
Fig. 1. (a) The experimental setup (see text for description). The surface a

consistent with each other and the physical surface. In Experiment 2, conflicts

shown here. (b) The task sequence. The surface was displayed for 750 ms pr

(reaction time). Movement initiation caused the screen to alternate between b

ended, the surface reappeared and remained until 2 s had elapsed since the g

perturbation shown here is exaggerated for illustration purposes. Movemen

cylinder from the starting surface and when it first contacted the target surf
surface orientation for visuomotor control. Fig. 1 illus-

trates the task and the experimental apparatus.

Following on suggestions that the visual processes

mediating motor planning are distinct from those that

subserve online control of movements (Glover & Dixon,

2001, 2002), we measured the relative contributions of
ppears here with a 35� slant. In Experiment 1, the visual cues were

between monocular and binocular cues were no more than half the size

ior to the go signal and remained until subjects picked up the cylinder

lack and white every other frame for 167 ms. After the flickering mask

o signal. On some trials, the surface slant was perturbed by ±5�. The
t duration was the elapsed time between when subjects removed the

ace.
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binocular and monocular depth cues to both planning

and online control of the simple reaching movements

used for object placement. We found that binocular cues

influence online control more than planning. This led us

to analyze the temporal evolution of subjects� corrective
movements in response to independent perturbations in
the cues as a means to understand the temporal dynam-

ics of the cue integration process during the online con-

trol phase of movements. The results show that

differences in the speed with which binocular and mon-

ocular cues are processed account for the apparent dif-

ferences in how cues contribute to planning and online

control. We describe a model that generalizes static sta-

tistical models of cue integration to a dynamic process
that integrates sensory information continuously over

time in a statistically optimal way. By simulating quali-

tatively different forms of the model, we show that the

empirical results obtained here cannot be accounted

for by a simple difference in cue reliability but require

the existence of temporal differences in cue processing.

The model shows how the contribution of different sen-

sory cues to motor behavior results from the interplay
between temporal constraints in visual processing and

the intrinsic reliability of cues.
2. Experiment 1

The first experiment tested whether subjects continu-

ously used visual information about the orientation of
the target surface to control their movements when plac-

ing a cylinder on it. Previous studies have shown that

subjects correct for the position of a stimulus when it

is altered during a movement, even when they are per-

ceptually unaware of the perturbation (e.g. by perturb-

ing the position during an orienting saccade to the

target)1 (Goodale, Pelisson, & Prablanc, 1986; Pelisson,

Prablanc, Goodale, & Jeannerod, 1986; Prablanc &
Martin, 1992; Soechting & Lacquaniti, 1983). We used

a similar strategy to test for online corrections in re-

sponse to changes in visual information about surface

orientation occurring during reaching. To mask the mo-

tion transients created by the perturbations, we flickered

the display for 10 video frames at the time of the pertur-

bation. The closest natural analog to this would be an

eye blink. No subjects reported noticing the perturba-
tions, even when told about them explicitly after the

experiment.
1 Other studies have shown that subjects make online corrections for

changes in the size and orientation of an object; however, these

changes were accompanied by highly salient, detectable transients in

the visual stimulus. It is not clear whether or not subjects use visual

information about these object properties to make online corrections

to their grip and hand posture in the absence of such transients.
2.1. Methods

2.1.1. Apparatus

Participants viewed a 20 in. computer monitor

through a horizontal half-silvered mirror so that the vir-

tual image of the monitor appeared as a horizontal sur-
face behind the mirror (see Fig. 1a). An opaque backing

placed underneath the mirror during experimental trials

prevented subjects from seeing anything but the image

on the monitor. Images were displayed at a resolution

of 1152 · 864 pixels resolution at a 118 Hz refresh rate

in stereo mode (59 Hz refresh rate for each eye) through

Crystal Eyes stereo goggles. Subjects sat with their head

in a chin rest that oriented their view down towards the
mirror. They viewed the computer-rendered images

through circular occluders positioned in front of each

eye to prevent vision outside the central area of the

workspace; the edges of the computer monitor were

never visible.

Subjects viewed a circular, textured surface in a ste-

reoscopic virtual display and were asked to place a cyl-

inder flush onto the surface; a robot arm placed a real
surface co-aligned with the virtual surface so that sub-

jects actually were placing the cylinder onto a real sur-

face. The disk was randomly presented at a range of

slants relative to the viewer (the angle of the surface

away from the fronto-parallel) ranging from 15� (near

fronto-parallel) to 45� (in our setup, slightly more

slanted than a horizontal tabletop).

A PUMA 260 robot arm positioned a round metal
target plate in the workspace below the monitor to be

co-aligned with the virtual surface. On each trial, sub-

jects moved a plexiglass cylinder measuring 6.4 cm in

diameter and 12.7 cm in height and weighing 227 g from

a starting plate located to the right of the subject to the

target surface. An Optotrak 3020 system (Northern Dig-

ital, Inc.) tracked the 3D positions of four infrared

markers placed on the cylinder at 120 Hz.
A metal plate mounted on the bottom of the cylinder

was connected to a 5 V source, and both the starting

plate and the target plate on the end of the robot arm

were connected to a Northern Digital Optotrak Data

Acquisition Unit II. The data acquisition unit recorded

the voltage across each plate so that a 5 V signal indi-

cated when a plate was in contact with the cylinder�s me-

tal base. The signals on each plate were recorded at
120 Hz and were used to mark the beginning of a move-

ment and the time of initial contact between the cylinder

and the target surface.

2.1.2. Calibration procedures

Spatial calibration of the virtual environment re-

quired computing the coordinate transformation from

the reference frame of the Optotrak to the reference
frame of the computer monitor and the location of a

subject�s eyes relative to the monitor. These parameters
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were measured at the start of each experimental session

using an optical matching procedure. The backing of the

half-silvered mirror was temporarily removed so that

subjects could see their hand and the monitor simulta-

neously, and subjects positioned an Optotrak marker

at a series of visually cued locations. Cues were pre-
sented monocularly, and matches were performed sepa-

rately for both eyes. Thirteen positions on the monitor

were cued, and each position was matched twice at dif-

ferent depth planes. We calculated the three-dimen-

sional position of each eye relative to the center of the

screen by minimizing the squared error between the set-

tings for the probe predicted by the eye position and the

measured probe settings. After the calibration proce-
dure, a rough test was performed in which subjects

moved a marker viewed through the half-silvered mirror

and checked that a dot rendered binocularly appeared

co-aligned with the marker.

Another calibration procedure determined the coor-

dinate transformations between the Optotrak reference

frame and the reference frame of the robot arm. An

infrared marker was placed on the end of the robot
arm. We then moved the robot arm along each of its

three coordinate axes and measured the resulting dis-

placement of the marker in Optotrak coordinates. The

transformations computed from this and the viewer cal-

ibration procedure allowed us to position the physical

target surface in the same location and orientation rela-

tive to a subject as the virtual target surface used for the

stimulus.

2.1.3. Stimuli

Target surfaces were rendered as circles filled with

randomly generated Voronoi textures (see Fig. 1b).

The elliptical outlines of the surfaces and the texture

patterns provided monocular cues about target orienta-

tion. Disparity between the features in the images

presented to the two eyes provided binocular informa-
tion.2 Stimuli were drawn in red to take advantage of

the comparatively faster red phosphor of the monitor

and prevent inter-ocular cross-talk. The Optotrak data

was used in real-time to compute the position and orien-

tation of the cylinder and to render the cylinder when it

appeared in the workspace below the monitor. Subjects

only saw the rendered cylinder during the 250–300 ms

prior to target contact when it appeared within the cir-
cular apertures through which they viewed the scene.

We used a linear extrapolation routine that accounted

for the temporal delay (�25 ms) between the Optotrak

recording and the display of the cylinder, so the cylinder

always appeared at the correct location and orientation.
2 Motion cues were eliminated by use of a chin rest. Blur and

accommodation cues were determined by the orientation of the screen.

Those cues always conflicted with disparity and figural cues manip-

ulated in the experiment.
When viewed through a half-silvered mirror, differences

between the pose of the real and virtual cylinder were

only apparent at the very end of a movement, when

the cylinder decelerated sharply at contact.

The target surface was presented 35 cm in front of the

observer and 45 cm below their eyes. When horizontal,
the target surface would have appeared at a 38� slant rel-
ative to the observer�s line of sight to the center of the

surface. Relative to the target surface, the starting plate

was positioned 40 cm to the right, 20 cm closer to the

observer, and 10 cm higher.

2.1.4. Procedure

Subjects participated in two 1-h sessions, each con-
sisting of four 80-trial blocks. Practice trials were admin-

istered at the start of the first session until the subject

understood the task and could perform it correctly.

On each trial, the virtual target surface was displayed

at a slant ranging from 15� to 45� in 5� increments. After

displaying the surface for 750 ms, the computer pro-

duced an audible signal to tell subjects to begin moving

the cylinder from the starting plate to the target plate.
Upon movement initiation, the screen flickered black

and white for 10 display frames (167 ms) before the

stimulus reappeared (see Fig. 1b). On 36% of trials,

the slant of the target surface changed by ±5� after the
flickering mask. These stimulus perturbations were lim-

ited to trials on which the initial target surface slant was

either 25� or 35�. The flicker masked the motion tran-

sient caused by the change in surface slant. No subjects
reported noticing the changes in orientation, even when

told afterward about the perturbations. Each trial ended

when the cylinder contacted the target plate, which pro-

vided subjects with haptic feedback about the target

slant. Trials not completed within 2 s after the go signal

were discarded.

2.1.5. Subjects

The eight participants in this experiment were from

the University of Rochester community, had normal

or corrected-to-normal vision, reported having normal

binocular vision, were right handed, and were naı̈ve to

the purposes of the study. Written informed consent

was obtained from each volunteer, and subjects were

paid $10 per hour for their participation. The experi-

ments were conducted according to the guidelines set
by the University of Rochester Research Subjects Re-

view Board, who approved the study.

2.2. Results

Fig. 2a shows the mean cylinder trajectories for one

subject. For unperturbed trials, the subject continuously

adjusted the orientation of the cylinder to match the tar-
get surface orientation at contact. On perturbed trials,

the cylinder trajectories were initially the same as for
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Fig. 2. (a) Mean cylinder orientation over time for 1 subject. The

trajectories have been normalized so that time 0 is the end of the mask,

when any perturbations would be inserted, and time 100 is when the

cylinder first comes into contact with the surface. The solid lines

correspond to unperturbed trials, and the dashed lines represent

perturbed trials. Perturbations occurred around 25� and 35�. This

subject completely corrected for the perturbations despite being

unaware of them. (b) Proportional correction vs. duration. The

average proportional correction in response to the perturbations is

shown for each subject as a function of average movement duration.
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unperturbed trials, but the subject clearly corrected the

cylinder orientation after the perturbation to match

the new surface slant despite not noticing that the orien-
tation of the target surface had changed. The amount by

which subjects corrected for the perturbations depended

on the duration of their movements, with shorter move-

ments leading to less correction than longer movements

(see Fig. 2b). We tested this using a linear regression of

subjects� average proportional corrections against their

average movement duration (across subjects). The com-
puted slope was 0.00094, which was significant (the 95%

confidence interval was [0.00077,0.0011]). The small size

of the slope was due to the large movement durations as

measured in milliseconds.

For a more sensitive measure of how the perturba-

tions affected the movements over time, we applied a
novel analysis technique designed to measure the tempo-

ral evolution of sensory signals used to guide motor

behavior (Saunders & Knill, 2003, 2004). The smooth

cylinder trajectories allowed us to fit an autoregressive

linear model to predict the slant of the cylinder at each

time as a function of its slant at previous times. Corre-

lating the residual error of this model fit with the pertur-

bations in the sensory input on each trial provided a
measure of the time course of the influence of each per-

turbation on subjects� movements. The model has the

form,

st ¼ w1ðtÞ � st�1 þ � � � þ wnðtÞ � st�n þ kðtÞ � Dr; ð1Þ

where st is the slant of the cylinder at time t. We com-

puted the values of the weights and k(t) using a series
of linear regressions that predicted the current cylinder

orientation from the previous seven frames and the tar-

get surface slant perturbations (Dr), which were always

�5�, 0�, or +5�. The number of previous frames included

in the regression only affected the smoothness of the

resulting functions. We chose seven frames because this

appeared to minimize the noise, though it is not crucial

to the model�s performance.
The weights (wi(t)) capture the normal temporal cor-

relations in the slant of the cylinder as subjects trans-

ported it. k(t) measures the amount of the residual

variance in the slant of the cylinder at time t that can

be attributed to perturbations in the target surface slant.

We refer to k(t) as the perturbation influence function.

Before subjects have time to respond to perturbations,

k(t) equals zero, and its value changes over time accord-
ing to how much added influence the perturbation has

on the orientation of the cylinder at time t (above and

beyond the its influence on earlier orientations, as pro-

pagated through the autoregressive model).

Fig. 3a shows the perturbation influence functions

computed by grouping trials across all subjects for per-

turbations around 25� and 35�. These indicate that sub-
jects corrected for the perturbations with approximately
a 250–300 ms delay (measured from the end of the

masking flicker). Fig. 3b shows individual perturbation

functions from three subjects with different durations;

the trends shown in Fig. 3a are reflected across

individuals.
2.3. Discussion

Past studies have shown that subjects correct for

changes in stimulus position, size, and orientation in
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Fig. 3. (a) Perturbation influence functions for Experiment 1. Influence functions are shown for each of the slants used for perturbation trials.

(b) Representative perturbation influence functions from three subjects whose movements lasted for different durations.
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the frontal plane when the perturbations are detectable

(Desmurget et al., 1996; Paulignan, Jeannerod, Macken-

zie, & Marteniuk, 1991; Paulignan, Mackenzie, Mar-

teniuk, & Jeannerod, 1991). Similarly, subjects correct
for changes in target position even when unaware of

the perturbations, like when they are masked by a sac-

cade (Goodale et al., 1986; Prablanc & Martin, 1992).

Only the latter result clearly implicates a role of visual

target information in normal online control of hand

movements. The current results show that orienting

movements as well as hand transport are under the con-

trol of continuously updated visual estimates of three-
dimensional target surface orientation. While perhaps

not surprising, establishing this was a prerequisite for

performing Experiment 2, which used a similar pertur-

bation technique to measure the separate influences of

monocular and binocular cues.

The reaction times we obtained from the temporal

decorrelation analysis showed that responses to changes

in surface slant are noticeably slower than corrections to
two-dimensional target displacements, which occur

within 100–150 ms (Paulignan et al., 1991; Paulignan

et al., 1991; Prablanc & Martin, 1992). This may be

due to the more complex processing required to estimate

slant but could also reflect delays caused by the flicker

used to mask the orientation perturbation.
3. Experiment 2

We quantified the relative contributions of monocu-

lar and binocular cues to task performance by providing
conflicting 3D orientation information from the two

cues and correlating the kinematics of subjects� move-

ments with the orientations suggested by the individual

cues. To study differences in cue integration for planning

and online control of motor behavior, we introduced cue

conflicts either at stimulus onset (when subjects were

planning movements) or at movement onset (when sub-

jects were executing reaching movements). Analyzing
the contributions of the different cues to the movement

over time revealed differences in the temporal dynamics

of processing monocular and binocular information.

3.1. Methods

3.1.1. Apparatus

The apparatus was identical to that used in Experi-
ment 1.

3.1.2. Stimuli

Target surface stimuli like those from Experiment 1

were presented at slants ranging from 20� to 45� in 5�
increments. In cue-consistent trials, target surfaces were
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rendered at the specified slant, but in cue-conflict trials,

the binocular disparities were made to suggest a slant

different from the monocular cues (the outline shape

of the figure and the texture pattern). Cue-consistent

stimuli were presented at the full range of slants. Cue

conflicts were added only around a base slant of 35�,
an angle at which subjects give significant weights to

both monocular and binocular cues (Saunders & Knill,

2003), using all nine combinations of 30�, 35� and 40�
for the monocular and binocular slants (three of these

were cue-consistent conditions).

Cue conflicts were generated by rendering a distorted

copy of the surface and texture at the slant specified for

the binocular cue. The surface and texture were dis-
torted so that when projected from the binocular slant

to a point midway between a subject�s eyes (the cyclo-

pean view), the projected surface and texture suggested

the slant specified for the monocular cue on that trial.

To compute the appropriate distortion, we projected

the positions of the surface and texture vertices into

the virtual image plane of a cyclopean view of a surface

with the slant specified for the monocular cue. Then, we
back-projected these projected vertex positions onto a

plane with the specified binocular slant to generate the

new, distorted texture vertices.

In unperturbed cue conflict trials, the cue conflicts

were present in the stimulus when it first appeared in

the display, and the stimulus remained unchanged

throughout the trial. In this case, the cue conflicts af-

fected both planning and online control of movements.
In the perturbed cue conflict conditions, the initial stim-

ulus display had no cue conflicts (both binocular and

monocular slants were set to 35�), but we added conflicts

at movement onset by perturbing one or both cues using

the same method described for Experiment 1. In these

trials, responses to the cue conflicts could only reflect

online use of visual information for controlling a

movement.
To prevent subjects from learning a dependency on

either cue based on the haptic feedback, the physical tar-

get surface was oriented at a slant randomly selected

from a range of slants ±2� around the average slant sug-

gested by the two cues (the random perturbation was

added on both cue-consistent and cue-conflict trials).

3.1.3. Procedure

Subjects participated in four 1-h sessions, each con-

sisting of four 80-trial blocks. Since Experiment 1

showed that subjects� corrections began approximately

275–300 ms after the end of the visual mask, we re-

stricted movement durations to be at least 600 ms to al-

low sufficient time for responding to the perturbations.

Most subjects required 700–1000 ms to complete a

reach, so the 600 ms threshold was below the range of
natural movement speeds. If subjects moved the cylinder

before the go signal, completed the movement in less
than 600 ms, or did not complete the trial within 2 s

after the go signal, subjects received an error message,

and the trial was rerun at a random time later in the

same block. Otherwise, the progression of each trial

was identical to trials in Experiment 1.

3.1.4. Subjects

Nine subjects participated in this study. All met the

same criteria specified for Experiment 1, and no subjects

participated in both experiments.

3.2. Results

To quantify the relative overall contributions of bin-
ocular and monocular cues to a movement, we corre-

lated the slants suggested by each cue on a trial with

the slant of the cylinder at the point just prior to making

contact with the target surface (its contact slant). Most

subjects showed biases in their movements that reflected

a tendency to orient the cylinder to the mean of the full

range of slants; therefore, we included both multiplica-

tive and additive bias terms in the regression. This gave
a linear equation relating the contact slant of the cylin-

der to the slants suggested by each cue of the form

scontact ¼ k � ðwmono � rmono þ wbin � rbinÞ þ b; ð2Þ
where scontact is the contact slant of the cylinder, rmono

and rbin are the slants suggested by the monocular and

binocular cues, respectively, including any perturba-
tions, k and b are the bias terms, and wmono and wbin

are weights that represent the relative contributions of

the two cues to the final orientation of the cylinder.

Since wmono and wbin are constrained to sum to 1,

wbin = 1 reflects complete dependence on the binocular

cues, and wbin = 0 reflects complete dependence on the

monocular cues.

Fig. 4a plots wbin for the perturbed and unperturbed
conflict conditions. On average, the binocular cues con-

tributed more to the final contact slant of the cylinder in

the perturbed conditions than in the unperturbed condi-

tions (T(8) = 2.36,p < .05), and this effect appears con-

sistently across subjects. Because the perturbed

conditions isolated the contribution of visual informa-

tion for online corrections and performance in the

unperturbed conditions reflected a mixture of planning
and online effects, the results indicate that binocular

cues influenced subjects� online control of their move-

ments more than they influenced movement planning.

If we assume that the contact slants of the cylinder on

unperturbed trials reflect a proportional correction of

the planned contact slant, we can use the weights esti-

mated in the two conditions to calculate the relative con-

tributions of the cues to movement planning.
Specifically, we modeled the contact slant of the cylinder

as a weighted mixture of cue influences on movement

planning and online corrections,
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Fig. 4. (a) Normalized binocular cue weights for perturbed and

unperturbed cue conflict conditions computed from the expression

wbin/(wbin + wmono) (a weight of 0.5 reflects equal contributions from

both cues) for individual subjects and averaged across all subjects.

Eight of the nine subjects relied more on binocular information for

perturbed trials than for unperturbed trials. (b) Normalized binocular

cue weights for planning and online control. These were inferred from

the unperturbed and perturbed weights as described in the text. Since

Subject 3 fully corrected for the perturbations, that subject�s planning
weights were unconstrained and thus were excluded.
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scontact ¼ kplan � ðpmono � rmono þ pbin � rbinÞ þ konline

� ðcmono � rmono þ cbin � rbinÞ þ b; ð3Þ

where kplan and konline represent the relative contribu-
tions of planning and online control to the final contact

slant of the cylinder, pmono and pbin represent the rela-

tive contributions of monocular and binocular cues,

rmono and rbin, to planning (pmono + pbin = 1), cmono

and cbin represent the relative contributions of binocu-

lar and monocular cues to online control (cmono +

cbin = 1), and b is an additive bias term. In this model,
a subject who compensates completely for planning er-

rors during online control would have kplan = 0, while

a subject performing a ballistic movement (no online

corrections) would have konline = 0. By fitting the

weights for visual cues and movement phases using lin-

ear regressions, we can infer how monocular and binoc-
ular cues contribute to planning and online control and

how planning and online control contribute to visual

control of reaching movements.

Fig. 4b shows the results of applying the model to the

data derived from the perturbed and unperturbed condi-

tions. The binocular weight for online control is given

by the weight derived from the perturbed trials since

the first term in Eq. (3) is a constant in that case (the
slants suggested by binocular and monocular cues for

planning were equal in these conditions). Binocular cues

influenced online control more than planning by a factor

of 50%.

One possible explanation for the difference is that the

visual computations underlying online control are dis-

tinct from those underlying motor planning, with online

visual computations giving more weight to binocular
information than the computations used for planning

movements. An alternative explanation, however, is that

the visual computations for motor planning and online

control are identical and that the differences arise from

different time constants in the mechanisms that process

binocular and monocular cues. In the short time avail-

able for online control, monocular cues may be pro-

cessed too slowly to have as much impact on control
as they have on planning, when more time is available

to integrate them with binocular cues.

To test this, we applied the same temporal decorrela-

tion analysis technique used in Experiment 1 to the cue

conflict data. As in the previous experiment, we com-

puted the influence of the perturbations using a series

of linear regressions. This required expanding the influ-

ence term, k(t), into two components, kbin(t) and
kmono(t), one each for the perturbations in the binocular

and monocular cues, Drbin and Drmono, in the cue per-

turbation trials.

st ¼ w1ðtÞ � st�1 þ � � � þ wnðtÞ � st�n þ kbinðtÞ � Drbin

þ kmonoðtÞ � Drmono: ð4Þ

As before, we fit the weights and values of the influ-
ence functions at each time t using linear regression.

Fig. 5 shows the influence functions for the binocular

and monocular cues. While the weights assigned to the

monocular and binocular perturbations eventually reach

the same levels, the binocular perturbation influence

function increases earlier, or at least more quickly, than

the monocular perturbation influence function. The re-

lative influence of the two cues asymptotes approxi-
mately 250–300 ms after the initial response to the new

information.
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Because individual subjects� data were noisy, the per-

turbation influence functions were derived by fitting the
linear model to all of the subjects� data. To test whether

the timing effects were consistent across subjects, we pre-

dicted that the timing differences apparent in Fig. 5

would result in a greater influence of binocular cue per-

turbations on the contact slant of the cylinder for short-

duration movements than for long-duration movements.

We separated each subject�s trials into thirds according

to duration and compared the online cue weights from
the shortest-duration perturbation trials with those

from the longest-duration perturbation trials. Fig. 6

shows the results of this analysis. Subjects consistently

showed a larger influence of binocular perturbations

for the shortest movements than for the longest move-

ments, which matches the predictions of the model.3

3.3. Discussion

Experiment 2 had two key results: (1) subjects de-

pended on binocular cues more than monocular cues

when using online visual information to guide reaching

movements, and (2) the relative influence of binocular

information was higher for the online control phase

than for planning. Both findings can be explained using

the temporal decorrelation analysis, which showed that
3 In both experiments, subjects saw a rendered version of the cylinder

come into view during the final 250–300 ms of each movement. Given

that the measured sensorimotor delay was very similar to this time,

specialized mechanisms for visual feedback control cannot account for

the initial differences in the cue perturbation functions, which appear

well before the rendered cylinder comes into view.
binocular information is processed faster than mono-

cular information. The differences in the temporal

dynamics of cue processing result in the information

from binocular cues becoming available sooner than

information from monocular cues, thus allowing binoc-
ular cues more time to affect movements during online

control. This is consistent with our result that binocular

cues had a relatively greater effect on online corrections

for short-duration movements, when there was less time

for monocular information to accrue, than for long-

duration movements. The differences in processing

speeds also help explain why binocular information

dominates online control but not planning. The plan-
ning stage allowed sufficient time for information from

monocular cues to accumulate, resulting in a more even

balance between monocular and binocular contribu-

tions. We predict that if there were less time for plan-

ning, the temporal dynamics of cue processing would

also create a bias towards binocular information during

this phase.

3.3.1. Modeling

The temporal analysis suggests that while binocular

cues about target surface orientation influence cumula-

tive online corrections more than motor planning, the

underlying cause appears to be a difference in the speeds

at which the cues are processed. This inference is based

on a comparison between the perturbation influence

functions for each cue, as measured from the kinematic
data. The relationship between the visual cue integration

process and these influence functions, however, is indi-

rect. Potentially, other factors in the cue integration pro-

cess could give rise to similar results. Since the
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conclusion suggested by the data is that the results ob-

tained reflect differences in the temporal properties of

cue processing, we must explore whether other differ-

ences between the systems processing the cues, particu-

larly simple differences in cue reliability, could give rise

to the observed patterns.
To explore this possibility, we simulated a control

model that optimally integrates multiple sources of sen-

sory information over time. Fig. 7 illustrates the struc-

ture of the model (see Appendix A for details of the

model�s implementation). The key element of the model

is the sensory front end to the motor control system, a

Kalman filter that optimally integrates incoming sensory

information about surface slant from two different sen-
sory sources. These inputs are modeled as the outputs

of two low-pass temporal filters on surface slant that

are perturbed by noise. The time constants of these fil-

ters determine the rate at which information from each

cue accrues in the system.

The Kalman filter computes the statistically optimal

estimate of target surface slant over time based on the

incoming sensory information from binocular andmono-
cular cues (Anderson & Moore, 1979). How each cue

influences internal slant estimates is determined by a

combination of the relative reliability of the information

from each cue and the time constants of the low-pass fil-

ters associated with processing each cue. When the tem-

poral filters associated with each cue are equivalent, the

relative influence of monocular and binocular cues on

the output of the filters is determined entirely by the re-
lative uncertainties in the slant estimates derived from

each. Simulations show that the relative contributions

of each cue to how the filters respond to perturbations

in the input remain constant over time. Differences in

the time constants associated with each cue, however, in-
Fig. 7. A Kalman filter provides the front-end sensory mechanism for estimat

surface slant by combining slant estimates from binocular and monocular

assume that the estimates derived from each cue are low-pass filtered. The sl

estimate of slant derived from the output of the Kalman filter using a weigh

reliability of the previous internal estimate. We simulated a filter that assumes

a small amount. This causes the filter to weight new sensory information mo

slant from both cues. This provides input for a control model that genera

assumed to have an overall, fixed delay of D ms relative to the output of the
duce an interesting dynamic in the cue integration pro-

cess. Initially, the internal estimate of slant is driven

by the faster cue. When the binocular cue (assumed here

to have a smaller time constant) suggests a slant that

conflicts with the monocular cue, the output of the filter

first tracks the slant suggested by the binocular cue, and
then it slowly shifts to a more balanced estimate between

the two cues. Assuming enough time has passed between

stimulus presentation and motor planning, the relative

influence of the two cues will reach a stable state by

the time the subject initiates movement. When new

information about the target stimulus arrives (when an

object moves, after a saccade, or after an eye blink as

simulated in the current experiment), the output of the
filter initially shifts toward the slant suggested by the

binocular cue but then begins to shift back toward a

more balanced estimate.

The experimental data does not directly probe the

internal sensory estimate of surface orientation used to

guide hand movements but rather measures the output

of the motor system. In order to compare model perfor-

mance to human data, we coupled the output of the Kal-
man filter to a motor control module that mapped the

internal estimate of surface orientation to rotation com-

mands to the hand (Todorov & Jordan, 2002). We mo-

deled a simple control law derived from the minimum

jerk principle (Hoff & Arbib, 1993). The control law

computes a jerk signal (third derivative of orientation)

that smoothly rotates the cylinder from its current orien-

tation toward the orientation of the target. The output
of the model is the orientation of the cylinder as a func-

tion of time between the beginning of the movement and

contact with the target surface.

By simulating the model under different parameter

settings, we tested whether or not the empirical results
ing target surface slant. The filter updates its internal estimate of target

cues with the slant predicted from its previous internal estimate. We

ant estimates from each cue are combined with the running ‘‘internal’’

ted average. The weights are in proportion to their reliabilities and the

the slant of the target surface can change randomly at each time step by

re heavily than old. The output of the system is an optimal estimate of

tes a control signal for rotating the cylinder. The sensory signals are

motor control signal.
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could be explained by one or more of three classes of

models: (a) a difference in reliability of cues (no differ-

ence in processing speed), (b) a simple fixed delay in

one cue relative to the other, or (c) low-pass filtering

of both cues with different time constants associated

with each cue. We have run a large number of simula-
tions of the model under different parameter settings.

All have shown the same qualitative behavior. This is

illustrated in Fig. 8, which shows the cue influence func-

tions computed from the outputs of specific instantia-

tions of each of the three classes of models described

above. For all simulations, we assumed a fixed sensori-

motor delay of 184 ms between the output of the Kal-

man filter and the input to the motor control module.
For the simulation shown in Fig. 8a, we assumed that

the variance of the slant estimate from binocular cues

was 20% lower than the variance of the slant estimate

from monocular cues. For this simulation, the slant esti-

mates derived from each cue were unfiltered. For the

simulation shown in Fig. 8b, we assumed equal variance

parameters but with a fixed delay of 75 ms between the

output of the monocular slant estimator and the binoc-
ular slant estimator. For the final simulation shown in

Fig. 8c, we filtered the outputs of the two estimators

through recursive, first-order linear filters. The time con-

stant for the monocular cue filter was 120 ms and was

8 ms for the binocular cue filter. The variance of the

noise in each filter�s output was adjusted so that the vari-

ances of the optimal estimators� outputs matched those

from the previous two simulations.
Only the model with a difference in filter time con-

stants could qualitatively account for the measured per-

turbation influence functions. The model using different

cue reliabilities always gave rise to influence functions

like those shown in Fig. 8a. Regardless of parameter set-

tings, the proportional values of the cue perturbation

influence functions for this model remained constant

over time, which was inconsistent with the slow change
present in subjects� data. Changing the delay associated

with the monocular cues always gave rise to the simple

shift shown in Fig. 8b. The exact shape of the perturba-

tion influence functions was highly dependent on the

uncertainty parameters and time constants associated

with each cue (four free parameters). The influence func-

tions shown in Fig. 8c were generated using a set of

parameters that matched subjects� data well. Further de-
tails about the parameters used for these simulations are

provided in the Appendix A.

Fig. 8 clearly shows that the low-pass filtering model

gives the best qualitative match to subjects� cue pertur-

bation influence functions. Perhaps more significant is

the fact that model (a), in which only the reliabilities

of the two cues differed, did not reproduce the effect that

binocular cues have a stronger relative influence on total
corrections for fast movements than for slow move-

ments; it predicted that movement duration should not
affect cue influences. In contrast, with the parameters

used to generate the influence functions in Fig. 8c, model

(c) shows a change in the normalized binocular cue

weight from 0.73 to 0.57 for the fastest and slowest

movements simulated (using a range similar to the

empirically observed movement times). This is almost
exactly equivalent to the values measured for subjects

in the experiment. The simple delay model (model (b))

shows a similar pattern. Thus, while speed-induced dif-

ferences do not disambiguate the form of the temporal

differences in cue processing, they clearly implicate a dif-

ference in timing.
4. General discussion

Our primary finding was that binocular cues contrib-

ute more to online control of reaching movements than

to motor planning. Like Glover and Dixon (2001, 2002),

we found differences between planning and online con-

trol, although our evidence does not support the

existence of a functional dissociation between the per-
ceptual processes driving these two phases. Rather, ana-

lyzing the temporal properties of the placement task

showed that differences in processing speeds determine

how 3D cues influence the online control phase. Bino-

cular cues had a greater influence on online control be-

cause observers processed binocular information about

surface slant more rapidly than monocular information.

This seems to run counter to the common wisdom that
binocular processing is slow (McKee, Levi, & Bowne,

1990). Another way to frame the result is that comput-

ing slant from monocular cues is slower than computing

slant from binocular disparities, but neither is parti-

cularly fast. As in Experiment 1, reaction times to per-

turbations in both cues (>250 ms) were much slower

than reaction times to two-dimensional target displace-

ments. While this may reflect the more complex process-
ing required to estimate 3D slant than to estimate 2D

retinal position, it might also reflect a delay caused by

the flicker mask.

The difference in processing speeds for binocular and

monocular cues renders binocular cues more important

for online control of hand movements, but the relative

influence of the cues depends critically on movement

duration. In our experiment, we used artificial blinks
to mask perturbations. Another common trigger for

changes in retinal information is the orienting saccade

to a target (Biguer, Jeannerod, & Prablanc, 1982). In

this case, the temporal dynamics of cue processing will

also markedly affect the relative contributions of cues

to online control of movements. The dynamics, how-

ever, may differ from what we have found here since

subjects need to attain proper vergence after an orient-
ing saccade to effectively use binocular cues. Corrections

to errors in the initial conjunctive saccades are typically
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Fig. 8. Stereotypical cue perturbation functions derived from running the model in three qualitatively different sensory parameter regimes. (a) The

low-pass temporal filter was a delta function impulse response (no temporal smoothing or delay), but the reliability of the monocular cues was less

than that of binocular cues. (b) The filter associated with the monocular cue was assumed to be a simple delay in the output. (c) The filters associated

with each cue were recursive, second-order filters that effectively smoothed and delayed the sensory estimates from each cue. Here the time constant

for the monocular cue filter was significantly larger (more smoothing) than the time constant for the binocular cue filter. Details of the model

parameters used for the simulations are given in the text and Appendix A.
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slow and smooth (van Leeuwen, Collewijn, & Erkelens,

1998), possibly slowing binocular information down to

the point where monocular information begins to

dominate.

Modeling the visual computations underlying natural

behaviors requires fully considering the dynamics of the
processes involved. The current work has revealed some

features of the dynamics of 3D cue processing and

shown how they can be naturally modeled using the

tools of dynamic statistical estimation as embodied in

the framework of Kalman filtering. Many other aspects

of sensory processing are amenable to this treatment

(Burgi, Yuille, & Grzywacz, 2000; Grzywacz & Hildreth,

1987; Wolpert, Ghahramani, & Jordan, 1995). For
example, the model easily can be extended to deal with

integrating information computed during one fixation

with information derived from later fixations. Similarly,

while we have considered how the visual system accrues

information over time about a static stimulus, we often

interact with moving stimuli. The corresponding sources

of dynamic visual information (e.g. motion transients)

have their own time constants, which necessarily affect
how the brain uses the information for motor control.

We hope that some of the tools introduced here will

prove useful in studying these more complex aspects of

visuomotor control.
Appendix A

The model consisted of sensory front-end for estimat-

ing target surface slant that sent its output to a motor

control module for generating commands to rotate the

cylinder. The sensory front-end was a Kalman filter that

optimally integrated binocular and monocular informa-

tion about slant over time. We modeled the motor con-

troller as a simple kinematic controller that computed a

jerk signal (third derivative of the slant of the cylinder)
for adjusting the slant of the cylinder online. The instan-

taneous jerk signal at each time step was computed as

the next step in a minimum jerk trajectory computed

based on the current estimate of the slant of the target

surface and of the slant of the cylinder. Slant trajectories

were generated by integrating the jerk signal. Since we

were interested in how constraints on sensory estimates

of target surface slant impacted performance, we used a
simple control system that did not use sensory feedback

about the slant of the cylinder. The internal estimate of

the slant of the cylinder was derived by integrating noisy

versions of the jerk signal sent out by the controller. We

also simulated models that incorporated sensory feed-

back about the slant of the cylinder, and the effects of

cue perturbations about target surface slant were similar

for those models.
To model the slant estimates derived from each cue,

we assumed that the inputs to the Kalman filter were
independent copies of the slant suggested by each cue

with added white, Gaussian noise. The slant estimates

derived from each cue were low-pass filtered in time

through second-order, recursive linear filters of the form

yðtÞ ¼ t
s2
e�t=s: ðA:1Þ

The time constants for the filters associated with each

cue were set by qualitatively matching the performance

of the model to subjects� data. The internal dynamic

model of the Kalman filter assumed that the slant of

the target surface could change by a small amount at

each time step. The state update equation for target sur-

face slant assumed by the model was

rðt þ otÞ ¼ rðtÞ þ wðtÞ; ðA:2Þ
where r(t) is the slant of the surface at time t and w(t) is

a white noise source, and ot was set to 8 ms for our

simulations.

In order to implement the low-pass filters for each

cue, we augmented the state vector with a set of dummy

variables that were updated with a recursive state tran-
sition matrix. Thus, we have for the state update equa-

tion for the filter,

X ðt þ otÞ ¼ AX ðtÞ þ XðtÞ; ðA:3Þ
where the state vector, X(t), is given by

X ðtÞ ¼

rðtÞ
r0
binðtÞ

r00
binðtÞ

r0
monoðtÞ

r00
monoðtÞ

2
66666664

3
77777775

ðA:4Þ

and the state transition matrix, A, is given by

A ¼

1 0 0 0 0

ot
s2
bin

e�ot=sbin 0 0 0

0 e�ot=sbin e�ot=sbin 0 0

ot
s2mono

0 0 e�ot=smono 0

0 0 0 e�ot=smono e�ot=smono

2
66666664

3
77777775
:

ðA:5Þ

Rows 2 and 3 of the state transition matrix imple-
ment the recursive low-pass filter for the estimates of

slant derived from binocular cues, and rows 4 and 5

implement a similar filter for the estimates of slant de-

rived from monocular cues. X(t) is a white noise process

with zeros in all rows except the first. The first row is

w(t), the white noise process that implements the as-

sumed random walk in surface slant.

The observed estimates of slant that serve as input to
the Kalman filter are given by the equation

ZðtÞ ¼ HX ðtÞ þ WðtÞ; ðA:6Þ
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where the observation matrix H is given by

H ¼
0 0 1 0 0

0 0 0 0 1

� �
: ðA:7Þ

H ‘‘reads’’ off the outputs of the two filters, r00
binðtÞ and

r00
monoðtÞ. W(t) is a white noise process with standard

deviations representing the effective internal noise in

sensory estimates of slant from each of the two cues.

The optimal estimate of target surface slant at time t

is given by the Kalman update equation

X
_

ðt þ otÞ ¼ AX
_

ðtÞ þ K½ZðtÞ �HX
_

ðtÞ�; ðA:8Þ
where K is the Kalman gain matrix, given by

K ¼ AR
X
_
ðtÞ
H0 HR

X
_
ðtÞ
H0 þ RW

h i�1

: ðA:9Þ

R
X
_
ðtÞ is the error covariance matrix for the internal

estimate of slant, X
_

ðtÞ, and RW is the covariance of the

observation noise. The error covariance matrix is up-

dated with the equation

R
X
_
ðtÞðtþotÞ ¼ RX þ AR

X
_
ðtÞA

0 � KHR
X
_
ðtÞA

0;

where RX is the noise covariance of the random walk
process assumed for the internal estimate of surface

slant.

The sensory parameters for the simulation shown in

Fig. 8a were sw = 0.15�, sbin = 10�, smono = 12�. The

low-pass filters were not incorporated into this simula-

tion, though doing so has no change on the pattern of

results. With these parameters, the asymptotic standard

deviation in the output of the filter was 1.37. The same
parameters were used for the simulation of the fixed

delay model shown in Fig. 8b, but with an added delay

in the output of the monocular cue of 75 ms. The sen-

sory parameters for the simulation shown in Fig. 8c,

with low-pass filtering of the slant estimates derived

from each cue, were sw = 0.15�, sbin = 14�, smono = 160�,
sbin = 8 ms and smono = 120 ms. With these parameters,

the asymptotic standard deviation in the output of the
filter was 1.27�.

The output of the sensory model provided input to a

controller that attempted to minimize the average

squared jerk in movements between the current esti-

mated slant of the cylinder and the current estimate of

the slant of the target surface. Following Hoff and Arbib

(1993), this is given by a controller that updates the state

of the cylinder using the equation,

rcylðt þ dtÞ
_rcylðt þ dtÞ
€rcylðt þ dtÞ

3
75 ¼

1 1 0

0 1 1

�60=D3 �36=D2 1� 9=D

2
64

3
75

�
rcylðtÞ
_rcylðtÞ
€rcylðtÞ

2
64

3
75þ

0

0

60=D3

2
64

3
75r̂ðtÞ;
where rcyl(t), _rcylðtÞ, and €rcylðtÞ are the slant of the cylin-
der at time t and its first and second derivatives, and r̂ðtÞ
is the perceptual estimate of the slant of the target sur-

face. D is the time remaining in the movement.

We simulated the model for 1000 trials using the same

perturbation conditions used in Experiment 2. To match
the variance in subjects� movement durations, we ran-

domly chose the total movement duration on each trial

from a uniform distribution between 650 and 1000 ms.

To simulate the measurement error in the slants derived

from the Optotrak recordings (derived from sample

variances in the measured slant of a stationary cylinder),

we added white Gaussian noise with a standard devia-

tion of .0125� (an estimate derived from the standard
deviation in slant measurements taken from a station-

ary cylinder) to the slant trajectories generated by the

model. We then analyzed the resulting ‘‘measured’’ slant

trajectories to compute cue perturbation functions for

the model, as shown in Fig. 8.
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