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Do humans optimally integrate stereo and texture information
for judgments of surface slant?
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Abstract

An optimal linear system for integrating visual cues to 3D surface geometry weights cues in inverse proportion to their uncer-

tainty. The problem of integrating texture and stereo information for judgments of planar surface slant provides a strong test of

optimality in human perception. Since the accuracy of slant from texture judgments changes by an order of magnitude from low to

high slants, optimality predicts corresponding changes in cue weights as a function of surface slant. Furthermore, since humans

show significant individual differences in their abilities to use both texture and stereo information for judgments of 3D surface

geometry, the problem admits the stronger test that individual differences in subjects� thresholds for discriminating slant from the

individual cues should predict individual differences in cue weights. We tested both predictions by measuring slant discrimination

thresholds and stereo/texture cue weights as a function of surface slant for multiple subjects. The results bear out both predictions of

optimality, with the exception of an apparent slight under-weighting of texture information. This may be accounted for by factors

specific to the stimuli used to isolate stereo information in the experiments. Taken together, the results are consistent with the

hypothesis that humans optimally combine the two cues to surface slant, with cue weights proportional to the subjective reliability of

the cues.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Vision provides a number of independent cues to the

three-dimensional layout of objects and scenes––stereo,

motion, texture, shading, etc. While individual cues by

themselves provide uncertain information about a scene,

under normal conditions multiple cues are available to

an observer. By efficiently integrating information from

all available cues, the brain can derive more accurate
and robust estimates of three-dimensional geometry (i.e.

positions, orientations, and shapes in three-dimensional

space). One complication that makes cue integration a

hard problem is that the reliability of the information

provided by different cues can change in a-priori un-

predictable ways as a viewer moves or as surfaces

change position and orientation in a scene. In order to

most accurately interpret multiple cues, the visual sys-
tem should combine the information provided by the

cues in a way that accounts for these changes in their

relative reliability.
* Corresponding author.

E-mail address: knill@cvs.rochester.edu (D.C. Knill).

0042-6989/$ - see front matter � 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0042-6989(03)00458-9
Fig. 1 illustrates the effect of cue uncertainty on the
optimal interpretation of a pair of visual cues to depth.

The information provided by each cue is characterized

by the likelihood function derived from the image in-

formation for that cue. The spread, or variance, of the

likelihood function is a measure of the uncertainty of the

data. Assuming that the image data associated with each

cue are conditionally independent (e.g. the noise on one

set of measurements is independent of the noise on the
other), the joint likelihood function for the two cues

together is simply the product of the individual likeli-

hood functions. The result is a likelihood function whose

peak is biased toward the more reliable of the two cues.

When likelihood functions are Gaussian, the peak of the

joint likelihood function is a weighted average of the

peaks of individual likelihood functions, with weights

inversely proportional to the variances of the likelihood
functions. Thus, an optimal integration system will ar-

rive at an interpretation that is, on average, a weighted

sum of the interpretations from each cue individually,

with more weight given to the more reliable cue.

In this paper, we test whether the human visual sys-

tem integrates stereo and texture information to esti-

mate surface slant in a statistically optimal way. In
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Fig. 1. The information provided by a cue about a scene S is given by

its likelihood function, pðI jSÞ, where I is the image data associated with

the cue (e.g. disparities for stereo or the flow field for structure-from-

motion). The likelihood function for a combination of cues is, under

some independence assumptions, simply the product of the likelihood

functions for each cue. The peak of the joint likelihood function for the

two cues, bSS is biased toward the peak of the narrower likelihood

function. The variance of the joint likelihood function, r2, is smaller

than the variances of either of the individual likelihood functions, r2
1 or

r2
2. This reflects the reduction in uncertainty that is gained by com-

bining multiple sources of information.
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particular, we test the hypothesis that human observers

are ‘‘subjectively’’ ideal observers for this perceptual

task. A subjectively ideal observer is one that weights

cues in inverse proportion to their subjective uncer-

tainty––the uncertainty with which the observer can
make inferences from individual cues. Several things

make the problem of integrating stereo and texture in-

formation for slant perception a particularly interesting

problem for testing optimal integration.

First, we can reasonably expect the relative uncer-

tainties of texture and stereo information about slant to

vary as a function of the slant itself. The uncertainty in

the information provided by texture is known to de-
crease by an order of magnitude as slant increases from

0� to 70� (Knil, 1998a, 1998b). How the uncertainty of

stereo information behaves as a function of slant is

somewhat less clear; however, Banks, et al. computed

theoretical reliability curves for slant from stereo based

on an assumption of fixed noise levels on horizontal

disparity, vertical disparity and horizontal vergence and

found that the predicted reliability varied little over a
wide range of slants (Banks, Hooge, & Backus, 2001).

While this result may not hold exactly for large field of

view stimuli, in which disparity noise can be expected to

vary as a function of relative depth away from fixation,

it strongly suggests that the relative uncertainties of

texture and stereo cues to slant will vary significantly as
a function of slant––the very parameter being estimated.

This differs from the more commonly studied situation

in which cue uncertainty varies with changes in an un-

related scene dimension (e.g. stereo information im-

proves at closer viewing distance, motion parallax

information improves with increased head motion) or is

made to vary by adding visually apparent noise in one or

the other cue (Ernst & Banks, 2002). Unlike in these
situations, in which ancillary cues exist to help deter-

mine cue uncertainty (Landy, Maloney, Johnston, &

Young, 1995), changes in cue uncertainty that result

from changes in slant cannot be estimated independently

of the slant itself.

Second, large individual differences exist in subjects�
abilities to use stereo information for judging depth;

thus, we are likely to find large differences in what would
be each individual�s optimal cue combination rule for

texture and stereo. We can use these individual differ-

ences to test whether the relative weighting of texture

and stereo for each subject is consistent with their sub-

jective uncertainties for the two cues––a strong predic-

tion of the subjective ideal observer hypothesis.

Finally, previous quantitative tests of optimal cue in-

tegration have studied how the brain integrates infor-
mation from different sensory modalities––auditory and

visual (Gharamani, Wolpert, & Jordan, 1997), pro-

prioceptive and visual (van Beers, Sittig, & Denier van

der Gon, 1999), or visual and haptic (Ernst & Banks,

2002)––rather than within-modality integration. Within-

modality integration may have different properties than

cross-modal integration. For example, cross-modal in-

tegration may involve selective allocation of attentional
resources, whereas attention cannot be easily deployed

selectively between different, spatially coincident visual

cues when both are available (except by artificial means

such as closing one eye to eliminate the stereo cue).

Our research followed an experimental strategy sim-

ilar to that taken by Ernst and Banks in their study of

visual–haptic cue integration (Ernst & Banks, 2002). We

first measured individual subjects� slant discrimination
thresholds for stimuli containing only one or another of

the studied cues. These provided measures of the sub-

jective uncertainty in each cue. Applying optimal esti-

mation theory, we used these thresholds to predict the

pattern of weights that each subject should give to stereo

and texture cues as a function of surface slant. Using a

cue perturbation paradigm, we measured the actual

weights that characterize subjects� combination rules for
integrating stereo and texture cues to slant and com-

pared these to the weights predicted by the discrimina-

tion thresholds.

1.1. Optimal cue integration

Several sources provide good tutorial introductions

to optimal linear cue integration; in particular, showing
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Fig. 2. The classic model of linear cue integration assumes indepen-

dent modules for estimating a scene parameter like surface slant from

each cue. The estimates derived from each cue are presumed to be

weighted and summed to arrive at a final estimate. This point of view

leads to questions of the form, ‘‘how does the visual system determine

the weights to give to each cue?’’ As described later in the general

discussion section, such an explicit embodiment of cue weights in the

system need not exist for a system to be optimal.
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how the weights in a linear model relate to the under-

lying uncertainty in a set of cues (see, for example,

Blake, Bulthoff, & Sheinberg (1993) or Landy et al.

(1995)). Here, we introduce the concept of optimal cue

integration beginning from a somewhat more general

perspective. The concept of an ideal observer from sta-

tistical estimation theory is central to understanding the

theoretical underpinnings of cue integration. An ideal
observer is an estimator that combines information from

multiple cues so as to minimize a pre-defined error

function on the estimated parameters. We use the

standard definition of an ideal observer as one that

minimizes the mean squared error of its estimates (for

unbiased observers, this is necessarily a minimum vari-

ance estimator). The ideal observer bases its estimates

on a posterior conditional probability density function,
pð~SSj~IIÞ, on the parameter being estimated, ~SS, given a set

of image data, ~II . Assuming a flat prior probability

density function on~SS, 1 the posterior density function is

proportional to the likelihood function, pð~II j~SSÞ.
As illustrated in Fig. 1, the joint likelihood for a pair

of cues,~II1 and~II2 is simply the product of the likelihood

functions for each individual cue,

pð~II1;~II2j~SSÞ ¼ pð~II1j~SSÞpð~II2j~SSÞ: ð1Þ
When the likelihood functions for the two cues are

Gaussian, the joint likelihood function is Gaussian as

well. The mean of the joint likelihood function, bSS , is a
weighted sum of the means of the individual likelihood

functions, bSS1 and bSS2,bSS ¼ w1
bSS1 þ w2

bSS2; ð2Þ
where the weights, wi, are in inverse proportion to the

variances of the individual cue likelihood functions

(Rao, 1973),

wi ¼
1=r2

i

1=r2
1 þ 1=r2

2

: ð3Þ

The variance of the joint likelihood function, r2 is given

by (Rao, 1973)

r2 ¼ 1

1=r2
1 þ 1=r2

2

: ð4Þ

These relationships lead naturally to an implementation

of an ideal integrator as one that computes a weighted
average of the outputs of independent estimators for

each of the individual cues available in an image (see

Fig. 2). Rather than take such a mechanistic point of

view to cue integration, we consider the system for es-

timating surface slant to be a black box with inputs

coming from stereo and texture and an output giving

some representation of surface orientation. We are ag-
1 The effect of a non-flat prior is minimal when the image data is

much more constraining than one�s prior knowledge of scenes.
nostic as to the algorithm that the system uses to inte-

grate the cues but would like to test whether the system

is optimal (we take up the issue of mechanism in the

general discussion section). The optimality hypothesis,

in this context, predicts certain consistency relationships

between the statistics of the slant estimates generated

under different cue conditions. The two specific predic-
tions are, first, that the variance in slant estimates de-

rived from images containing both cues is related to the

variance in slant estimates derived from images con-

taining only one or another of the cues by Eq. (4), and,

second, that the average estimated slant for images in

which the slants suggested by stereo and texture conflict

will be a weighted average of the slants suggested by the

individual cues (assuming an unbiased estimator), with
the weights related to the variance of slant estimates

derived from individual cues according to Eq. (7).

1.2. Previous work on optimal cue integration

Numerous studies have shown that subjects give dif-

ferent weights to cues under different stimulus condi-
tions. For example, recent psychophysical studies have

shown that the human visual system gives a pro-

gressively lower weight to stereo information as ver-

gence distance increases (Johnston, Cumming, & Parker,

1993). This seems rational, as the reliability of stereo

information about relative depth along a surface de-

creases with increasing distance away from the observer

(Banks et al., 2001). The same is true for motion––when
the number of frames of a motion sequence is reduced to

two, the weight that subjects give to motion cues for 3D

shape is reduced (Johnston, Cumming, & Landy, 1994).
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These results are qualitatively consistent with the pre-

dictions of optimal integration.

Another approach to modulating cue reliability has

been to add noise to the visual features underlying a cue,

either naturally (e.g. by increasing the randomness in

surface textures prior to projection (Knill, 1998c;

Young, Landy, & Maloney, 1993)), or less naturally

(e.g. adding motion jitter to texture elements in a motion
display (Young et al., 1993)). As predicted, increasing

the noisiness of a cue reduces the weight that subjects

appear to give to the cue when combined with other,

uncorrupted cues.

Results like these are qualitatively consistent with

optimal integration of purely visual cues, but have not

quantitatively tested for optimality. One exception in the

vision domain was an experiment by Jacobs (Jacobs,
1999), in which subjects� variances in shape settings for

motion-only and texture-only stimuli were used to pre-

dict their biases in shape settings for combined cue

stimuli. Jacobs showed that subjects� shape settings for

multiple cue stimuli could be accurately predicted by a

linear integration model with weights set using Eq. (4),

combined with a free parameter for the variance and

mean of the subjective prior. This data provides indirect
evidence for optimal integration, but Jacobs did not

actually measure cue weights, nor did he find the best

fitting set of weights to compare with the variance

measures. Whether or not subjects used a quantitatively

optimal integration strategy in the experiment is left

unclear.

In the domain of cross-modal integration, a number

of studies have directly addressed the predictions of
optimal cue integration. Gharamani et al. (1997) studied

the optimality of visual––auditory integration for target

localization. He found that, while localization was

dominated by vision, subjects appeared to give a small

weight to auditory cues (inconsistent with complete vi-

sual capture). Unfortunately, differences in visual and

auditory cue reliability across conditions were not large

enough to provide a strong test of optimality. More
recently, Ernst and Banks (2002) tested for optimal vi-

sual–haptic cue integration in object size judgments by

adding different levels of external visual noise to virtu-

ally displayed three-dimensional blocks. This allowed

them to artificially vary the reliability of visual cues to

object size over a large enough range to quantitatively

test the predictions of an optimal integrator. Ernst and

Banks found that visual and haptic size discrimination
thresholds accurately predicted the weights that subjects

gave to visual and haptic cues for size judgments when

simultaneously viewing and grasping objects.

The present study tested the predictions of an optimal

integrator for intra-modal (i.e. visual) cues to depth,

when the relative reliability of the cues changes naturally

as a function of the surface geometry being estimated

and when one might expect large individual differences
that allow a strong test of the hypothesis that humans

are subjectively optimal observers.
1.3. Specific psychophysical predictions

In order to operationalize the predictions of anopti-

mal integration model, we used slant discrimination

performance as an empirical measure of cue uncertainty.

We measured subjects� slant difference thresholds for

discriminating the slants of surfaces depicted by stimuli

containing only texture or stereo information individu-

ally or a combination of both cues. Assuming small
amounts of decision noise and a weak prior on the ex-

pected slant, discrimination thresholds can be directly

related to standard deviation parameters in the linear

Gaussian model, so that we can express Eq. (4) in terms

of the experimentally measured thresholds,

1

Tst–texðSÞ2
� 1

TstðSÞ2
þ 1

TtexðSÞ2
; ð5Þ

where Tst–texðSÞ is a subjects� threshold for discriminating

surface slant from stimuli containing both stereo and

texture cues, expressed as a function of the base slant, S,
around which the threshold is measured. TstðSÞ is the

threshold obtained using stimuli containing only stereo

cues and TtexðSÞ is the threshold obtained using stimuli

containing only texture cues.

Individual cue thresholds also predict the relationship
between the average perceived slant of cue conflict

stimuli and the slants suggested by each cue individually.

For an optimal integrator, the weights accorded indi-

vidual cues in a linear model are given by Eq. (3), which

can be expressed in terms of thresholds as

wstðSÞ � k
1

TstðSÞ2
; ð6Þ
wtexðSÞ � k
1

TtexðSÞ2
; ð7Þ

or

wstðSÞ
wtexðSÞ

� TtexðSÞ2

TstðSÞ2
: ð8Þ

The weights, like the thresholds, can change as a func-

tion of slant, S.
We set out to test these predictions by measuring

discrimination thresholds and cue weights for a number

of subjects at a range of surface slants. In particular, we

tested (a) whether or not slant discrimination thresholds

for single cue stimuli measured at different surface slants

accurately predict discrimination thresholds for com-
bined cue stimuli, (b) whether or not the single cue

thresholds predict differences in cue weights as a func-

tion of surface slant, and (c) whether or not individual
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differences in the same slant discrimination thresholds

predict individual differences in cue weights.
Fig. 3. Example stimuli used in the experiment. Stimuli are projected

at 0�, 30�, 50�, and 70� from top to bottom. Note that the random-dot

stimuli appear to have little if any slant. The blurry borders reflect the

visually blurred boundaries of the occluders, as seen by subjects.
2. Overview of experimental logic

We ran seven naive subjects in two experiments each

to test for subjective optimality. The first experiment

measured subjects� slant difference thresholds for dis-

criminating surface slant from stimuli containing only

texture cues, only stereo cues or both. We measured

thresholds for test slants ranging from 0� to 70� away

from the fronto-parallel. We used this data to test the
perceptual uncertainty predictions of an optimal inte-

grator model as embodied in Eq. (5).

We then ran the same subjects in a standard cue

perturbation experiment to measure the weights in a

linear model relating the perceived slants as suggested by

stereo and texture cues individually to the perceived

slant of combined cue stimuli. In this experiment, test

stimuli were generated with small conflicts between the
stereo and texture cues. Subjects made slant discrimi-

nation judgments comparing the cue conflict stimuli to

stimuli with consistent cues. Using this data, we esti-

mated the weights in a linear model characterizing the

perceived slant of a stimulus as a weighted sum of the

slants suggested by the texture and stereo cues. This

allowed us to test the prediction embodied in Eq. (8)

relating discrimination thresholds to cue weights.
The biggest problem we faced was to generate stimuli

that isolated stereo cues (for the stereo-only stimulus

condition). Texture-only stimuli were easy to generate––

subjects viewed projections of randomly tiled textures

with one eye patched. Combined stereo-texture stimuli

were similarly generated by having subjects view the

same stimuli, projected in stereo, using both eyes. To

generate stereo-only stimuli, we used large arrays of very
small, randomly positioned dots rendered on a receding

planar surface (see Fig. 3). Technically, these stimuli

contained texture density cues to a surface�s orientation;
however, we reasoned that since humans appear not to

effectively use texture density to judge surface slant

(Buckley, Frisby, & Blake, 1996; Knill, 1998c) and since

the rendered dots were so small as to make the size and

foreshortening cues nearly undetectable, these stimuli
had no subjectively useful texture information. An al-

ternative approach would have been to use textures that

were constrained to have a uniform density in the front-

parallel plane. Such stimuli, however, would not have

eliminated the texture density cue, but rather have

provided a constant, conflicting cue that surfaces were

fronto-parallel. In most experimental conditions, this

would have corresponded to a large, unnatural cue
conflict, raising the possibility that subjects might resort

to unknown non-linear cue integration strategies in the

discrimination task. For this reason, we chose to use
textures that were uniform in the plane of each test

surface, creating cue-consistent conditions. A control

experiment showed that subjects were so much poorer at

discriminating slant from monocular views of the

random-dot textures than they were from binocular
views that the density cue could have only had a mini-

mal effect on measured discrimination thresholds in

the binocular viewing condition, confirming our intu-

ition.
3. Experiment 1: Slant discrimination

3.1. Methods

3.1.1. Stimuli

Stimuli simulated perspective views of planar, tex-
tured surfaces that were slanted relative to the frontal

image plane. Surface slant varied, but tilt direction was

always vertical (i.e. the gradient of surface depth relative
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to the viewer was vertical in the cyclopean projection).

The slant of the virtual surfaces was conveyed by some

combination of texture and/or stereo information (see

Fig. 3). Three cue conditions were tested in the experi-

ment:

• Stereo and texture––Stimuli were stereoscopically

rendered views of a surface covered with a texture
composed of Voronoi polygons. The textures were

generated by computing the Voronoi tiling for a set

of randomly positioned points in the plane, and then

shrinking each polygon by 20% around its center of

mass. To increase the regularity of texel spacing, a

stochastic diffusion algorithm was applied to random

initial positions before constructing the Voronoi til-

ing (see Knill, 1998b; Rosenholtz & Malik, 1997).
• Texture-only––Stimuli in the texture-only condition

were identical to the stereo and texture stimuli, except

that only one eye�s view was presented, with the other

eye patched, so that no stereo information was avail-

able.

• Stereo-only––Stimuli were stereoscopic views of a sur-

face densely covered with small randomly positioned

planar dots. The random-dot texture was chosen to
minimize texture information and isolate stereo infor-

mation (see the control experiment below).

Nineteen Voronoi and nineteen random-dot textures

were generated in advance of the experiment. Each trial

used a randomly chosen pair of two different textures

from these pre-generated sets. Prior to mapping a tex-

ture onto a slanted surface, the texture was randomly
oriented in the plane, effectively increasing the number

of test textures. This also counterbalanced the effects of

any global compression that may have been present by

chance in the limited set of sample textures (which could

have created biased slant judgments). Both Voronoi and

dot textures were constructed as wrap-around tex-

tures––for stimuli with high surface slants the textures

were repeated as necessary to fill the field of view. The
periodicity in the textures is not readily apparent, as

can be seen in Fig. 3.

Voronoi textures consisted of 400 elements. These

were scaled prior to mapping them onto a test surface so

that the textures would have a density of 0.25 texels/cm2

and an average polygon diameter of 2.1 cm as measured

on the surface. For a texel at the fixation point, this

diameter corresponds to approximately a 2� visual
angle. For the dot textures, samples consisted of 1600

elements, scaled to have a density of 6.0 texels/cm2 and

dot diameters of 0.11 cm (0.11� visual angle at the fix-

ation point, on average). In the stereo conditions, sub-

jects could theoretically discriminate surface slant based

only on the difference in depth at the top (or bottom) of

a pair of stimuli. Similarly, in the texture-only condition,

subjects could make judgments based on the difference
in texture density at the top (or bottom) of a pair of

stimuli. In order to minimize the effectiveness of these

cues, we randomized the depths of the surfaces displayed

within a trial by ±4 cm around a mean distance of 60 cm

at the point of fixation (at the center of the stimulus).

This randomized the texture density in the image, since

the density was held constant on the surface.

Displays included a small spherical fixation target
(rendered without shading) in the center of the display at

the depth of the test surface in a stimulus. The fixation

point was scaled to have a diameter of 0.2� of visual

angle. The fixation point appeared prior to stimulus

presentation to allow subjects to establish fixation. Be-

cause we randomized the absolute depth of surfaces

within a trial, the fixation target was made visible during

the delay between pairs of stimuli in a trial, positioned at
the depth of the succeeding surface. That is, after the

first stimulus surface disappeared, the fixation mark

moved in depth to the depth of the second stimulus

surface. This facilitated proper fixation prior to the

presentation of each test stimulus. The fixation mark

remained on during the stimulus presentation.
3.1.2. Apparatus

Visual displays were presented in stereo from a com-

puter monitor viewed through a mirror (Fig. 4), using

CrystalEyes shutter glasses to present different stereo

views to the left and right eyes. Circular apertures were
positioned in front of each eye, at a distance of 6–8 cm,

to limit the field of view for each eye to a 15� region

around the fixation point. By placing the occluders near

the eyes, we also eliminated spurious frame effects of
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viewing surfaces through an artificial occluder at the

same depth as the surface.

In stereo mode, the monitor had a refresh rate of 120

or 60 Hz for each eye�s view, and a pixel resolution of

1024 · 768. The stimuli and feedback were all drawn in

red to take advantage of the comparatively faster red

phosphor of the monitor and prevent inter-ocular cross-

talk. The virtual surface of the monitor reflected
through the mirror was slanted relative to the viewer,

and any depth cues that cannot be simulated using ste-

reo shutter glasses, such as accommodative gradients,

would be consistent with the slant of the reflected

monitor surface. In the experiment, the angle between

the monitor surface normal and the viewer�s line of sight
was approximately 40� (varying slightly between sub-

jects), which was near the middle of the range of test
slants used for stimuli.

At the start of each experimental session, we used an

optical alignment procedure to calibrate the virtual en-

vironment. The backing of the half-silvered mirror was

temporarily removed, so that subjects could simulta-

neously see both the reflection of the monitor and a

small optical marker, which was tracked in 3D by an

Optotrak 3020 system. A sequence of visual locations
were cued by dots on the monitor, and subjects aligned

the marker with the cued locations. Cues were presented

monocularly, and matches were performed in separate

sequences for left and right eyes. Thirteen positions on

the monitor were cued, and each position was matched

twice at different depth planes. The combined responses

for both eyes were used to estimate the plane of the

virtual monitor surface (the reflected image of the
monitor behind the mirror) and the left and right eye

positions in 3D space. These parameters allowed us to

render geometrically correct images of left and right eye

views of a stimulus surface for each individual subject. It

also automatically accounted for any drift in the 3D

orientation of the mirror between experimental sessions.

After the calibration procedure, a rough test was per-

formed, in which subjects moved the marker while it was
visible through the half-silvered mirror and checked that

a rendered dot moved with the marker appropriately.

Calibration was deemed acceptable if deviations were

less than approximately 1–2 mm. Otherwise, the cali-

bration procedure was repeated.
3.1.3. Procedure

Subjects performed a two-alternative forced-choice

slant discrimination task. On each trial, subjects were

presented with a successive pair of surfaces, and judged

whether the first or second surface was more slanted.

Slant was defined to be the signed angle between the
surface normal and the line of sight to a cyclopean eye

mid-way between a subjects� left and right eyes. For

positive slants, the tops of stimulus surfaces appeared to
recede in depth; for negative slants, the bottoms ap-

peared to recede in depth.

Subjects were presented with some examples to dem-

onstrate the task, and in the first experimental session

performed a short block of practice trials with feedback

to ensure that they understood the procedure. On any

given trial, one of the pair of surfaces was the test

stimulus, set to one of four test slants (0�, 30�, 50�, 70�)
and the other was a probe stimulus. The order of test

and probe stimuli was randomized within blocks. The

probe stimuli had slants that varied around the test

slants, chosen using an adaptive staircase procedure.

Prior to each trial, all the previous responses from trials

in the same condition were used to compute maximum

likelihood estimates of the point of subjective equality

between the first and second stimuli, PSE, and the
threshold, T . The new probe value was randomly chosen

from within a small range around either the estimated

25% point (PSE� T ) or the estimated 75% point

(PSEþ T ). A-priori estimates of the mean and variance

of PSE and thresholds were combined with the data,

which served to constrain the choice of initial probes

when few or no previous trials are available. These

a-priori values were set manually between experimental
sessions based on offline fits of the data.

Trials began with a 250 ms presentation of the fixa-

tion point alone, followed by a pair of slanted surfaces,

each displayed for 1000 ms. Between pairs of surfaces,

there was a 500 ms delay with a blank screen and new

fixation point, presented at the depth of the second

stimulus. After both surfaces were presented, the display

remained blank until the subject made a response, which
initiated the next trial. Except for the initial practice

trials in the first session, no feedback was given.

Trials were self-paced, and subjects were encouraged

to take breaks as necessary. Subjects performed three

blocks of trials in each 1-h experimental session, corre-

sponding to the three cue conditions: texture-only, ste-

reo-only or stereo-and-texture. In the texture-only

condition, the unused eye was covered with an eye
patch. The order of conditions was randomized across

sessions, and the randomized order was varied across

subjects. Each block consisted of 256 trials, corre-

sponding to 64 trials for each of the four test slant

conditions. The experiment consisted of 6 sessions,

scheduled on separate days over the course of 2–3

weeks. The data from the first session of each subject

was discarded from the final analysis, to prevent any
initial learning effects from biasing the results. Pooling

across the remaining sessions yielded a total of 320 trials

per subject for each of the 12 (3 · 4) combinations of cue

condition and test slant.

3.1.4. Subjects

Seven undergraduates at the University of Rochester

served as subjects. All subjects were naive to the goals of
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the experiment and to vision research in general. All had

normal or corrected-to-normal vision and no known

problems with stereo vision. Performance on the stereo-

only conditions (combined with the control experiment

showing the weakness of the monocular cues in those

stimuli) showed that all subjects could make reasonable

use of stereo for depth judgments.
3.1.5. Data analysis

For each test slant, the raw data was organized into

arrays specifying the number of trials on which subjects

reported the second stimulus to be more slanted than the
first stimulus, as a function of the slant difference be-

tween the two stimuli. In pilot experiments, we found

that some naive subjects have a significant guessing rate

(e.g. because of attentional lapses). This was reflected in

psychometric functions that leveled off at points below

1.0 and above 0.0. In order to correct for guessing, we

fitted a modified cumulative Gaussian psychometric

function to each subject�s data in which the probability
of selecting a comparison stimulus was assumed to be a

mixture of an underlying Gaussian discrimination pro-

cess and a random guessing process. Writing subjects�
decision as

D ¼ 1; Comparison stimulus judged more slanted;
0; Test stimulus judged more slanted:

�
ð9Þ

The psychometric model was

pðD ¼ 1jDSÞ ¼ ð1� pÞCðDS; l; rÞ þ pq; ð10Þ
pðD ¼ 0jDSÞ ¼ 1� pðD ¼ 1jDSÞ; ð11Þ

where DS is the difference in slant between the first and

second stimulus, l is the mean of the cumulative

Gaussian, r is the standard deviation of the cumulative
Gaussian, p is the probability that a subject guessed on

any given trial and q is the probability that a subject

guessed the comparison stimulus, given that he or she

guessed at all. The mean parameter, l, is a measure of

the point of subjective equality between first and second

stimuli. It accommodates effects like perceptual drift in

the remembered slant of the first stimulus. A corrected

75% threshold can be computed from the standard de-
viation parameter r. The corrected threshold reflects the

75% threshold difference in slant between test and

comparison stimuli that a subject would have in a 2-

AFC choice without guessing and without a temporal

order bias in slant judgments (reflected by the l pa-

rameter).

Guessing parameters for each subject were assumed to

be constant across conditions within an experiment.
Parameters for the psychometric model (thresholds, r,
biases, l and guessing parameters, p and q) were com-

puted from maximum likelihood fits to the raw data.
The likelihood of a subject making a decision, Dij, on

trial i, for test slant j can be expressed as

Li;j ¼ 1� Di;j þ ð2Di;j � 1Þ½ð1� pÞCðDSi;j; lj; rjÞ þ pq�;
ð12Þ

where DSi;j is the difference in slant between two stimuli

on trial i of the jth test slant condition, and lj and rj

are, respectively, the bias and threshold parameters for

the jth test slant condition. The likelihood function for

the entire set of a given subject�s data is then given by

L ¼ P4
j¼1P

N
i¼1Li;j; ð13Þ

where N is the number of trials in each condition. The

standard error of our parameter estimates can be de-
rived from the covariance matrix of the likelihood

function, L, for the psychometric model parameters

(the standard error for each parameter estimate is the

square root of the corresponding diagonal element of

the covariance matrix). We used the standard approxi-

mation of the covariance function as the inverse of the

Hessian of the log-likelihood function, computed at the

maximum of the likelihood function (Rao, 1973) (as-
ymptotically correct for an infinite number of data

points).
3.2. Results

Fig. 5 shows sample plots of the best fitting 75%

thresholds (corrected for guessing) for three subjects.

Note that with the exception of one data point for

subject 3, the threshold for combined cue stimuli was

lower than or equal to the thresholds measured for the
individual cue stimuli. An optimal integrator would

show thresholds that varied lawfully as a function of the

thresholds for the single cue stimuli. Eq. (5) expresses

this lawful relationship,

1bTTst–texðSÞ2
� 1

TstðSÞ2
þ 1

TtexðSÞ2
; ð14Þ

where bTTst–texðSÞ is the threshold for discriminating sur-

face slant from stimuli containing both stereo and tex-

ture cues predicted by an optimal integrator of the two

cues. Fig. 6 shows average thresholds for each cue
condition as a function of surface slant along with the

average of the combined cue thresholds that would be

predicted by an optimal integrator for each observer.

The measured combined cue thresholds do not differ

significantly from those predicted from the individual

cue thresholds by an optimal model.

The guessing rate for subjects was on average

0.16± 0.13, indicating a high variance in attentional
focus. The average value of the q parameter (the prob-

ability of selecting the second stimulus, given that a

subject was guessing) was 0.41 ± 0.25, with the high
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Fig. 5. Slant discrimination thresholds for three subjects. With the exception of subject 3 in the 0� slant condition, thresholds for combined cue

stimuli (solid line) are below the thresholds for single cue stimuli or are equal to the lowest of the single cue thresholds. Error bars were computed

from the likelihood functions derived from the data for the psychometric model parameter fits––they correspond to the standard error of the

threshold estimates.
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standard deviation again reflecting a large variance be-

tween subjects in guessing strategy.

3.3. Discussion

The first effect that jumps out from the threshold data

is that, while both texture and stereo cues become more

reliable indicators of slant as surface slant is increased,

they do so at markedly different rates. At low slants,
near the fronto-parallel, stereo is significantly more re-

liable than texture, but at test slants of 50� and 70�,
subjects, on average, are better able to make slant
judgments from texture information than from stereo

information. This trend is consistent across all subjects
tested here, though subjects differ somewhat in their

average ability to use the two cues. Given individual

differences in human stereo-acuity, these individual dif-

ferences are not surprising. The decrease in slant-from-

texture thresholds as a function of slant is consistent

with earlier results using similar stimuli (Knill, 1998b)

and with the theoretical analysis showing large differ-

ences in the theoretical reliability of texture information
between surfaces at large slants and surfaces at low

slants.
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2 The proportional error on threshold estimates for the 0� texture-
only condition was significantly higher than for the other slants. It was

typically between 10% and 20% for non-zero slants, but all standard

errors on threshold estimates for the 0� slant condition were greater

than 30%.

2548 D.C. Knill, J.A. Saunders / Vision Research 43 (2003) 2539–2558
As noted in the introduction, determining such theo-
retical predictions for stereo disparity information is

more difficult. It requires assumptions about the un-

derlying measures that contribute to slant-from-dispar-

ity judgments (e.g. absolute disparity vs. disparity

gradients) and the levels of internal noise corrupting

those measurements. Assuming constant levels of noise

on horizontal disparity, vertical disparity and vergence

angle, Banks, et al. measured predicted reliability curves
(the inverse of threshold curves) for slant-from-disparity

as a function of slant and distance from the viewer

(Banks et al., 2001). They found very small effects of

slant on their reliability measures, less than those found

here. From their results, we would have expected flatter

threshold functions for slant-from-stereo; however, a

more complete noise model (for example, which ac-

counts for changes in noise levels as a function of ab-
solute disparity) could well change the theoretical

predictions. What the current results suggest, regardless

of the source of uncertainty in slant-from-disparity

judgments, is that humans should give progressively

more weight to texture as the slant of a surface increases.

Many of the subjects tested here would ideally give more

weight to texture information than stereo information at

high slants.
The results are broadly consistent with the hypothesis

that subjects, on average, optimally integrated stereo

and texture cues to surface slant. The one slant condi-

tion that shows some deviation from the prediction is

the 0� slant condition. For six out of seven subjects,

combined cue thresholds for the 0� slant condition were

significantly lower than predicted by the single cue

thresholds under an optimal integration model. Subject
3 in Fig. 5 was the only one of the seven subjects not to

show some super-additivity. Informal subject reports

suggested a potential reason for the apparent super-

additivity. The sign of slant for monocular, textured

stimuli at low slants often appeared ambiguous to sub-

jects––while appearing slanted away from the fronto-

parallel, the surfaces were bistable; they appeared to be

receding either at the top or the bottom of the surface.
Previous studies of slant perception from texture (Knill,

1998a, 1998b) suggest why this bi-modality might occur.

These studies have shown that subjects strongly rely on

a local foreshortening cue in texture patterns––using the

local deviation of textures from isotropy to estimate

slant. Since the local foreshortening of a texture is the

same for local slants of opposite sign (a circle projects to

the same ellipse from slants of 45� and )45�), this cue by
itself does not disambiguate the direction (sign) of slant.

Other gradient-based cues such as scaling are needed to

disambiguate the direction of slant. If these cues are

unreliable, as they are at low slants, the likelihood

function for slant from texture would not be Gaussian

as assumed in the linear integration model (and in the

psychometric model), but rather would be bimodal with

peaks at positive and negative values of slant. Li and
Zaidi, for example, have described examples in which

scaling information in a stimulus is not enough to dis-

ambiguate the sign of surface slant (Li & Zaidi, 2002).

This uncertainty would greatly exaggerate the uncer-

tainty in the absolute magnitude of slant from texture

for small slants. We, therefore, expect that the threshold

measures derived for the monocular texture stimuli are

exaggerated, leading to an underestimate of the pre-
dicted combined cue thresholds at 0�. 2 Since the stereo

cue effectively disambiguates the sign of slant in the

combined-cue stimuli, The combined cue likelihood

function is unimodal and the added uncertainty caused

by the ‘‘phantom’’ mode in the texture likelihood

function disappears (see Knill (2003) for a longer dis-

cussion of this phenomenon).

A more central concern for interpreting the threshold
data is that stimuli in what we have referred to as the

stereo-only condition contained texture information

about surface slant. Looking at the stimuli in Fig. 3

suggests that this information was not perceptually sa-

lient. To insure that this was indeed the case, we ran a

control experiment with two naive subjects to measure

their ability to make slant judgments from monocular

views of these stimuli.
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4. Control experiment

We repeated the discrimination experiment using two

cue conditions––binocular views of the random-dot

textures (equivalent to the stereo-only stimuli in exper-

iment 1) and monocular views of the same random-dot

textures. Since we were interested in measuring the de-

gree to which texture cues influenced slant judgments in
the random-dot stimuli in experiment 1, we interleaved

the two types of stimuli within experimental blocks.

Monocular conditions were generated by displaying

only the left eye�s view of the dot stimuli, with the right

eye�s view set to a black screen. In all other respects, the

methods were the same as in experiment 1. Two naive

undergraduates served as subjects in the experiment.

Fig. 7 shows the results of fitting thresholds to the
monocular and binocular conditions of the control ex-

periment. While both subjects could perform the task

under binocular viewing, in most conditions, they were

effectively at chance under monocular viewing. We�ve
plotted the thresholds as 90� for conditions in which

thresholds were unfittable simply as a point of com-

parison with the thresholds from binocular viewing. In

fact, in those conditions, the fitted thresholds were ef-
fectively infinite. We were able to fit thresholds to sub-

ject 2�s data in the 30� and 50� conditions, but these

thresholds were more than 4 times the thresholds found

under binocular viewing, indicating that even were the

subject to have used texture information in the binocu-

lar viewing condition, it would have contributed only

minimally to their performance.
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Fig. 7. Slant discrimination thresholds for two subjects in the control ex

thresholds were unfittable––subjects performed essentially at chance in these c

thresholds, estimated using the same method used in experiment 1.
5. Experiment 2: Measuring cue weights

The average threshold data provides some power for

testing the optimality hypothesis; however, the uncer-

tainty in threshold estimates is large relative to the small

improvements in thresholds predicted for most condi-

tions. This makes it impossible to use this data to test

whether the hypothesis of subjective optimality predicts
individual differences in thresholds. The predicted rela-

tionship between single cue thresholds and cue weights

provides a more promising approach to test optimality.

The clearest prediction of the threshold data is that

subjects should weight texture information more heavily

as the slant of a surface increases. The large individual

differences in relative thresholds across the single cue

conditions also support the stronger test of whether or
not individual variations in cue uncertainty predict in-

dividual differences in cue weighting. The second ex-

periment was designed to measure the effective weights

that subjects gave to stereo and texture cues when

making slant judgments. For each test slant used in

experiment 1, we created eight cue conflict test stimuli,

with one cue (either texture or stereo) simulated so as to

suggest the test slant and the other cue simulated so as
to suggest a slant that differed from the test slant by �D
or ±2D, where D was chosen separately for each test

slant to be a weakly discriminable slant difference (based

on the discrimination thresholds). Subjects performed

the same discrimination task used in experiment 1, with

probe stimuli containing consistent stereo and texture

cues to slant. We fit a psychometric model to the data
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periment. The broken bars with arrows denote conditions in which

onditions. Error bars reflect the standard error in estimates of subjects�
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that assumed that for each test slant, subjects based

judgments on a weighted sum of the slants suggested by

texture and stereo cues.

5.1. Methods

5.1.1. Stimuli

Consistent cue stimuli were identical to stimuli from

the texture and stereo condition in experiment 1: bin-
ocular images simulating left and right eye�s perspective
views of a planar surface covered with an isotropic

Voronoi texture, slanted away from the viewer in the

vertical direction. For these stimuli, the slant specified

by stereo and texture was always the same. Test stimuli

were generated so that the stereo cue suggested one slant

(Sst) and the texture cue suggested a different one (Stex).
This was done by rendering a distorted planar, Voronoi
texture at the stereo slant, Sst. The texture was distorted
before mapping onto the surface so that when projected

from the stereo slant to a point midway between a

subjects� two eyes (the cyclopean view), the texture

suggested the texture slant, Stex. We determined the

texture distortion in two stages. First, we projected po-

sitions of texture vertices for a cyclopean view of a

surface with slant Stex. We then back-projected these
points from the cyclopean eye�s projection onto a sur-

face with slant Sst to generate the new, distorted texture

vertices.

5.1.2. Procedure

The task and procedure were the same as in experi-

ment 1. As before, subjects made forced-choice dis-

criminations between the slants of successive pairs of

surfaces. From the perspective of the subject, the only
difference was that there were no longer different cue

conditions––all stimuli were viewed binocularly and

contained planar, Voronoi textures, as in the combined

cue condition in experiment 1. In the test stimuli of
Table 1

The values of D used to create cue conflict stimuli in the experiment

Subject D

70� 50� 30� 0�

S1 1.5� 6.0� 7.0� 12.0�
S2 3.5� 7.5� 8.0� 5.5�
S3 2.0� 3.0� 4.0� 7.0�
S4 2.0� 4.0� 4.0� 4.0�
S5 1.3� 3.3� 5.3� 8.0�
S6 2.0� 5.0� 2.0� 1.0�
S7 1.0� 2.0� 4.0� 5.0�

Values were chosen based on an initial approximate estimate of subjects� sla
proper measure for determining the size of an appropriate cue conflict is the d
from the slant suggested by the stereo disparity pattern. We derived these me

experiment 1. The values fluctuate around an average value 0.44, in part bec

measure to set the conflicts and in part because the initial psychometric fit u

attentional lapses).
experiment 2, the slants specified by texture and stereo

were independently varied, so that the two slant cues

had small conflicts between them. On any given test

trial, one of the two slant cues specified the test slant,

chosen from the set {0�, 30�, 50�, 70�}, and the other cue

specified a slant that differed from the test slant by

f�2D;�D;D; 2Dg. The value for D varied across subjects

and base slants. We chose it to be 1/2 the magnitude of
the discrimination threshold measured from the com-

bined cue stimuli in experiment 1. The threshold mea-

sure we used to set D, however, was derived without

taking into account attentional lapses, as we did for final

estimates of thresholds (as reported here for experiment

1); thus, the values we chose varied somewhat from what

was intended (see the caption for Table 1 for an ex-

tended discussion of this point).
Table 1 shows the values of D used to create cue

conflict stimuli for all seven subjects and all four test

slants. Also shown in the table are d 0 values for each

value of D, computed for each subject from the texture-

only and stereo-only texture thresholds measured in

experiment 1. The d 0 values reflect the discriminability of

the stereo and texture cues within a stimulus. Note that

with a few exceptions, the d 0 values are near the planned-
for level of 1/2.

For the initial sessions of the first two subjects, a

staircase was used to choose probe slants, as in experi-

ment 1. We noticed that the staircase was not very ef-

fective: because there were few trials per condition, the

probe choices were dominated by a priori settings. For

the remaining sessions of the first two subjects, and for

all sessions of the other subjects, we switched to a
method of constant stimuli, with probe slants set man-

ually to span a range around a point of subjective

equality expected from equal weighting of the cues.

Subjects performed the experiment across six 1-hour

experimental sessions, scheduled on separate days. Each

session consisted of three blocks of 256 trials, and the 32
d 0

70� 50� 30� 0�

0.3368 0.5144 0.3853 0.2658

0.2839 0.7246 0.4797 0.1862

0.2320 0.4423 0.2957 0.0072

1.6022 0.8897 0.6938 0.0753

0.3121 0.5319 0.5623 0.1968

0.7651 0.8613 0.1651 0.0477

0.4687 0.5973 0.4318 0.03

nt discrimination thresholds for combined stereo-texture stimuli. The
0 computed for discriminating the slant suggested by the texture pattern

asures from the single cue slant discrimination thresholds measured in

ause we used the combined stereo-texture cue thresholds as a heuristic

sed to set the conflicts had not been optimized (e.g. by accounting for



-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-20 0 20 40 60 80

All subjects

Te
xt

ur
e 

w
ei

gh
t

Test slant

Fig. 8. Texture cue weights, wtex (stereo weights are 1� wtex) as a

function of surface slant for all seven subjects.

D.C. Knill, J.A. Saunders / Vision Research 43 (2003) 2539–2558 2551
conditions (4 test slants · 8 conflicts) were randomly

inter-mixed within each block. Across sessions, this

yielded a total of 144 trials per condition for each sub-

ject.

5.1.3. Subjects

The seven subjects from experiment 1 participated in

this experiment.

5.1.4. Data analysis

The data analysis was similar to the first experiment

with one important difference. The psychometric deci-

sion model was modified to replace the slant difference

term, DS, with a weighted average of the slant difference

suggested by each cue, wtexDStex þ ð1� wtexÞDSst. The

resulting psychometric decision model is

pðD ¼ 1jDStex;DSstÞ
¼ ð1� pÞCðwtexDStex þ ð1� wtexÞDSst; l; rÞ þ pq;

ð15Þ
where DStex is the difference in slant suggested by texture

between the first and second stimulus and DSst is the

difference in slant suggested by stereo information. wtex

is the weight given by the observer to the texture cue,

constrained to lie between 0 and 1. Implicit in the

equation is the assumption that the weights given to

stereo and texture cues sum to 1. By including the

weights in the full psychometric function fit, we gain

more statistical power than would be obtained by first

finding points of subjective equality for each cue com-

bination condition and then using linear regression to
estimate the weights.

Since the likelihood function over the weight para-

meter was highly non-Gaussian, due to the boundaries

at 0 and 1, we used bootstrapping (Davison, 1997) to fit

error bars to the weight estimates. We repeated the

psychometric fits 1000 times, each time resampling (with

replacement) the individual trial data. The standard

deviation of the repeated estimates of the texture weight
parameter provided a measure of the standard error of

our estimate.

5.2. Results

Fig. 8 shows subjects� texture weights as a function of

surface slant (stereo weights would be given by

ws ¼ 1� wtex). As predicted by the threshold data, all

subjects show a strong trend to weight texture infor-

mation more heavily as surface slant increases. Using

Eq. (8) and assuming that the cue weights sum to one,

we computed the texture weights predicted by subjects�
discrimination thresholds. Fig. 9 plots the texture
weights predicted by three subjects� slant discrimination

thresholds along with the weights measured in experi-

ment 2 (the same subjects shown in Fig. 5). Fig. 10
shows averages across the seven subjects of both the

measured and predicted weights. Subjects� texture

weights increase as a function of surface slant as pre-

dicted by single cue thresholds (F ð3; 6Þ ¼ 6:6, p < 0:05).
On average, subjects appear to underweight texture by a

small amount, as compared to the weights predicted by

discrimination thresholds; however, this difference did

not reach significance (average difference¼ 0.12,

F ð1; 6Þ ¼ 3:2, p > 0:05).
5.2.1. Individual differences

The data clearly show that changes in discrimination

thresholds for slant from texture and slant from stereo

as a function of surface slant predict, on average, the
weights subjects give to the two cues. That is, on aver-

age, subjects appear to weight the two cues optimally.

How well do the predictions hold at the individual level?

In order to assess this, we measured the correlations

between measured and predicted texture weights for

each subject. These are shown by the dark grey bars

in Fig. 11. Correlations varied from 0.325 to 0.96.

A resampling procedure was used to estimate the
standard errors of the correlation coefficient measures.

On each iteration of the procedure, a new set of single

cue thresholds and texture weights was chosen from the

measured error distributions on those parameters. The

random threshold samples were then used to compute

predicted texture weights (using Eq. (8)), which were

then correlated with the random samples of measured

weights. The standard deviations of the resulting cor-
relation coefficients provided a measure of the standard

error in our estimates of the coefficients. With the ex-

ception of subject 1, all correlations were significantly
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Fig. 9. Plots of both measured and predicted texture cue weights for the same three subjects shown in Fig. 5.
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greater than 0 at the p < 0:05 level, and most were much

more significant than that.

These results would seem to indicate that the optimal

model fit some subjects� data (higher correlation coeffi-

cients) better than others. The measured correlations,

however, depend not only on the fit of the model, but

also on the uncertainty in our estimates of thresholds,
from which we derived the weights predicted by the

optimal model, and in our estimates of subjects� texture
cue weights. Larger levels of uncertainty in our estimates

of a subject�s thresholds and weights (as reflected in their

std. errors) will lead to smaller correlation coefficients.

We therefore measured the correlations that we would

have expected to measure if subjects were in fact opti-

mal, given the uncertainty in our estimates of thresholds
and weights.
To do this, we used a resampling technique in which

we associated with each subject an ideal observer whose

cue weights were related to its true discrimination

thresholds by Eq. (8), but for whom the experimentally

measured thresholds and weights were corrupted by the

noise equivalent to the standard error of the experi-

mentally measured values. We do not, however, know
subjects� true thresholds, but rather can only compute a

likelihood functions for these thresholds, given the ex-

perimental data. We therefore used a bootstrap proce-

dure to repeatedly sample possible values for the true

thresholds from the computed likelihood functions. For

each sample of a possible set of thresholds, we computed

the correspondingly optimal texture weights. This pro-

vided threshold/weight pairs for the set of ideal inte-
grators that fit the data from experiment 1. For each of
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sured and predicted texture weights across test slants for each subject.

The light grey bars show the correlation that would be obtained as-

suming that subjects� texture cue weights were optimally related to

their true slant discrimination thresholds, taking into account the

noisiness of the measurements (see text for details).
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these possible ‘‘true’’ values for the thresholds and

weights, we generated simulated samples of the thresh-

olds and weights that we might have measured in our

experiment (again using the likelihood function derived

from the data in experiment 1). This, finally, provided

an estimate of the threshold and weight pairs that we

would have measured were we to have run the experi-
ment many times over on any of the optimal integrators

whose thresholds fit the data for a given subject in ex-

periment 1. For each of the simulated experiments, we

measured the correlation between the weights measured

in the experiment and the weights computed by applying

Eq. (8) to the thresholds measure in that experiment.

This corresponds to a sample of the correlation that we

might have measured had we run the experiment over
again on an ideal integrator constrained to have

thresholds fitting the data measured for a given subject.

We repeated this resampling process 10,000 times to

compute the average correlation coefficient that we

would have expected to measure from an ideal integra-

tor given the noisiness in our own experimental data.

The light grey bars in Fig. 11 show the correlations

between measured and predicted texture weights that we
would expect to have obtained form an ideal integrator

constrained by the uncertainty in threshold measure-

ments for each subject. The error bars show the std.

deviation in the correlations computed across the sim-

ulated experiments, and reflect the amount of variation

we might expect in the correlations we would measure

for each subject were we to repeat the experiment mul-

tiple times. To a large extent, variations in the correla-
tions measured for each subject follow those that would

be predicted by the uncertainty in subjects� threshold
data. We can therefore infer that the optimal integration

model predicts relative changes in texture weights across

slant about as well as the uncertainty in our experi-

mental data would allow.

The previous analysis shows that for each subject, rel-

ative changes in measured texture weights are well-pre-
dicted by an optimal integrator model. We can push the

question of optimality even further by asking whether the

differences in the weights that individual subjects give to

texture are well predicted by individual differences in their

thresholds within any given test slant condition. Fig. 12

shows scatter plots of subjects� measured texture weights

vs. the weights predicted from their single cue threshold

data, with each slant highlighted in a different color. The
green diamonds, for example, show the measured texture

weight at 30� for all seven subjects, plotted as a function of
the weight predicted by their discrimination thresholds.

Looking separately at each color, shows that, for each test

slant, individual differences in texture weights do appear

to covary with individual differences in thresholds.

To quantify this effect, we measured, for each test

slant, the correlation between measured and predicted
texture weights across the seven subjects. Fig. 13 shows

the measured correlations as dark grey bars. All four

correlation coefficients were significantly greater than

zero at the p < 0:05 level. Using a procedure exactly

analagous to that used in the previous analysis, we

computed the correlations that would be predicted were

subjects to have been truly optimal, given the uncer-

tainty in our threshold and weight measures. These
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values are shown as light grey bars. On average, the

correlations between measured and predicted weights

are somewhat lower than those that would have been
predicted by the optimal model, but only marginally

so (except at 30�).
6. General discussion

The weight given by subjects to texture information

increased dramatically with increasing surface slant. This
increase was largely predicted by slant discrimination

thresholds at each slant, which show that the subjective

uncertainty in slant from texture becomes less than the

uncertainty in slant from stereo at high slants (slants

greater than 30�, on average). Moreover, individual dif-

ferences in subjects� cue weights are well correlated with

individual differences in their slant discrimination

thresholds. The results are thus generally consistent with
the hypothesis that humans integrate texture and stereo

cues to surface slant in a subjectively optimal way. The

one possible deviation from optimality in the data is that

subjects tended to give slightly less weight to texture than

would be predicted by the discrimination data. Before

discussing the implications of these results, however, we

need to critically evaluate some of the assumptions of our

analysis in light of the data.
6.1. Modeling assumptions

6.1.1. The Gaussian discrimination model

The psychometric model we used to model subjects�
judgments effectively assumed that perceived slant from

both texture and stereo are corrupted by Gaussian noise

that has constant variance within the range of slants

used to create stimuli around each test value. Subjects�
thresholds, however, are not constant as a function of

slant, indicating that the uncertainty in perceived slant

for any given stimulus is skewed around that slant. This
is particularly true for the texture cue, for which dis-

crimination thresholds shrink by more than an order of

magnitude from 0� to 70�. Thus, for texture-only stim-

uli, the underlying noise model should have increasing

variance with slant. Unfortunately, the amount of data

collected in the experiments did not support reliable

estimates of a skew parameter in the psychometric

model (as was done, for example, in Knill, 1998b). The
threshold measures, therefore, reflect an average uncer-

tainty around the test slant.

One implication of this is that the optimal model for

combining texture and stereo cues is not linear. Rather,

the linear weights are a first-order fit to the non-linear

combination rule around each test slant. For cue conflict

stimuli in which the stereo information is fixed to sug-

gest one slant, we should, in theory, be able to measure
smaller weights for the texture cue when the texture cue

suggests a smaller slant than when it suggests a larger

slant. Again, the data did not support accurate measures
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of this type of asymmetry in the weights. Our mea-

surements should be treated as first-order effects near a

given test stimulus. Some of the difference between

predicted and measured weights may be due to the non-

linearity of the truly optimal model. More focused tests

would be needed to test this possibility.
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Fig. 14. We simulated an ideal observer whose texture weights were

given by Eq. (3) and whose uncertainty in slant estimates from texture

and stereo varied over a large range across test slants. Discrimination

thresholds at each test slant were assumed to be determined by the

slant uncertainty in a given cue condition plus an additive noise factor

reflecting high-level noise. For this simulation, the standard deviation

of the high-level noise was set to equal the standard deviation of slant

estimates derived from the combined cue stimuli at that slant. Ac-

cording to this model, discrimination thresholds are given by

TtexðSÞ ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
texðSÞ þ r2

NðSÞ
p

and TstðSÞ ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
stðSÞ þ r2

NðSÞ
p

, with the

additive noise variance set to r2
NðSÞ ¼ ð1=r2

texðSÞ þ 1=r2
stðSÞÞ

ð�1Þ
(the

variance of the slant estimates derived from optimal integration of

texture and stereo cues). The graph plots the texture weights of an ideal

observer (with wtex ¼ r2
stðSÞ=r2

stðSÞ þ r2
texðSÞ) as a function of the

weights predicted from the approximation, wtex ¼ T 2
stðSÞ=T 2

stðSÞþ
6.1.2. The relationship between thresholds and cue uncer-

tainty

A second assumption of our analysis was that slant

discrimination thresholds accurately reflect subjects�
perceptual uncertainty about slant. In particular, the
predictions derived from the threshold data were based

on the assumption that thresholds are proportional to

the standard deviation of internal slant estimates. In

reality, discrimination thresholds will reflect other

sources of uncertainty such as high-level decision noise.

We have modeled some of this explicitly by including

parameters in our psychometric model for attentional

lapses and guessing, but other forms of high-level noise
probably corrupt subjects� judgments. The common way

to model such high-level effects is to assume that the

decision process effectively adds an independent noise

source to perceptual estimates. Assuming that decision

noise corrupts the integrated estimate of slant derived

from all available cues in the image, the presence of such

noise changes the predicted relationship between

thresholds and cue weights.
Thresholds should be modeled as being proportional

to the total noise in the system, given by

T 2
texðSÞ. Even though the decision noise level was high, the curve does

not deviate very strongly from a linear slope of 1.

TiðSÞ ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
i ðSÞ þ r2

NðSÞ
q

; ð16Þ

where TiðSÞ is the discrimination threshold for a test

slant, S, under cue condition i (e.g. stereo-only, texture-
only or stereo-and-texture), riðSÞ is the standard devi-
ation of the internal estimates of slant under this cue

condition and rNðSÞ is the standard deviation of an

additive noise source that models the effects of high-level

decision uncertainty.

The predictions that we have shown for cue weights

were derived by effectively assuming that rNðSÞ was

negligible and could be set to 0. To understand the ef-

fects of additive decision noise on the predicted rela-
tionship between thresholds and cue weights in our

simplified model, we simulated an ideal observer with

several variants of decision noise (constant variance and

variance proportional to the variance of the slant esti-

mate derived from the stimulus). Even high levels of

decision noise had only a small effect on the relationship

between the ideal observer�s true weights and those

predicted from the incorrect assumption that thresholds
are not affected by decision noise. Fig. 14 shows an ex-

ample in which the decision noise variance r2
NðSÞ was

assumed to be equal to the variance of the internal es-
timate of slant derived from a combined cue stimulus.

Thus, while subjects in the experiment undoubtedly were

effected by some amount of high-level decision noise,
this noise was unlikely to have significantly impacted the

measured relationship between thresholds and cue

weights.

6.1.3. Generalizing from random-dot stereoscopic stimuli

A serious concern for our interpretation of the

threshold data is the degree to which the thresholds

measured for the stimuli containing stereoscopic views
of random-dot textures accurately reflected the stereo

uncertainty in the stimuli used to estimate cue weights––

stereoscopic views of randomly tiled textures. The con-

trol experiment effectively dealt with the issue of the

texture information contained in the random-dot stim-

uli. To the extent that it was used, it would not signifi-

cantly impact our predictions. A more serious concern is

that the stereo information in the randomly tiled texture
stimuli may have been qualitatively better than is

available in the random-dot stimuli. Were this true, our

estimates of stereo cue uncertainty in the stimuli used to
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estimate cue weights would be higher than the true

values. This could explain why subjects appear to give

less weight to texture (hence, more weight to stereo)

than would be predicted by our threshold data. The fact

that subjects do not perform measurably better in the

combined cue stimuli than predicted by the single cue

threshold data argues against this interpretation; how-

ever, it remains a possibility, since the super-additive
effect of having improved stereo information in the

combined-cue stimuli could have been counteracted by

the sub-additive effects of any putative high-level deci-

sion noise.

6.1.4. Learning

The analysis presented here relies on subjects� cue
weights remaining stable over the time course of both

experiments. Jacobs and colleagues have performed a

number of experiments showing that subjects can effec-

tively modify the weights that they give to visual cues

over a short-time scale, when given feedback, either

haptic (Atkins, Fiser, & Jacobs, 2001) or auditory (Ja-

cobs & Fine, 1999), that is consistent with one of the

cues in a set of cue conflict stimuli. That such learning
could occur here sees unlikely, as subjects receive no

feedback in either part of the experiment. It remains

possible, however, that experiencing a large number of

single cue stimuli in the first experiment could lead to a

change in cue weights over time. Similarly, experience of

the cue conflict stimuli could potentially lead to changes

in weights that would violate the stationarity assump-

tions of our analysis. Since no feedback was given in
either of the experiments and, at least in experiment 2,

all cue conflict stimuli were inter-mixed in experimental

sessions, it is unclear how such learning would occur or

what changes such learning would lead to. One possi-

bility is that subjects simply become better at using ei-

ther texture or stereo information over the time course

of experiment 1––a form of passive perceptual learning.

Since thresholds were estimated assuming stationarity
over time, it is possible that the threshold estimates are a

biased reflection of the uncertainty that applies to sub-

jects� interpretation of slant in experiment 2. We have

looked at threshold estimates derived form the first half

of experiment 1 as compared to the second half and

found no consistent pattern across subjects; however,

the reliability of the data make fine learning effects im-

possible to pull out of this analysis. Beyond this type of
effect no rational principles exist to suggest a particular

pattern for weight changes, thus, we expect that our

stationarity assumptions are, at least to a first approxi-

mation, reasonable.

6.2. Underlying mechanisms

We took pains in the introduction to remain agnostic

about the mechanisms underlying cue integration. In
part, this was because psychophysical measurements of

cue weights do not, in themselves, tell us much about

mechanism. More importantly, we believe that inter-

preting the linear model as a direct reflection of com-

putational structures built into visual processing is

somewhat implausible. The problem considered here, in

which the uncertainty of a pair of cues varies with the

scene parameter being estimated, highlights this––the
notion of a system explicitly adjusting cue weights based

on cue uncertainty seems to require ancillary cues (e.g.

vergence angle for depth, measures of the noisiness in

image measurements, etc.) for measuring this uncer-

tainty. Such ancillary cues are not available in the con-

text of the current phenomenon––estimating cue

uncertainty requires an implicit estimate of slant, as the

two covary so strongly. Performing this computation
independently of estimating slant would appear to be

inefficient at best.

Alternatively, separate modules for slant from texture

and slant from stereo could output estimates of uncer-

tainty along with their estimates of slant. These uncer-

tainty estimates could be explicitly used to adjust the

weights used to combine the two estimates. Of course,

this approach would only support linear integration and
would be difficult to reconcile with problems that re-

quire non-linear cue interactions (Knill, 2003; Saunders

& Knill, 2001; Yuille & Bulthoff, 1996; Yuille & Clark,

1993). Several modern theories of neural population

coding provide an alternative approach in which ap-

parent re-weighting of cues results implicitly from

combining separate population codes derived from each

cue that implicitly code estimator uncertainty. The most
straightforward approach would be to use population

codes to represent likelihood functions (Zemel, Dayan,

& Pouget, 1998). Appropriate combination strategies

would then support the ‘‘multiplication’’ of individual

cue likelihood functions to arrive at a joint likelihood

function for any given scene parameter.

Ernst and Banks described a particularly simple

model for this, in which different neural populations
code object size as estimated from different cues. The

firing rates of cells tuned to different object sizes would

directly code the likelihood of that size. Simple multi-

plication of the firing rates of two such populations

would give a new population code in which the joint log-

likelihood function would be represented by the firing

rates in a ‘‘higher-level’’ population of cells. As they

noted, this specific instantiation of a population code for
likelihood functions has many limitations; however, it

effectively conveys the general form such a computation

might take. Recently, Deneve, Latham, and Pouget

(2001) have proposed an alternative form of neural cue

integration in which a dynamic network with a middle

layer of basis function units can be shown to compute

maximum likelihood estimates of scene parameters from

multiple cues, even when the integration is inherently
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non-linear. All of these ideas have in common the

property that cue uncertainty is computed and repre-

sented in populations of neurons and that computations

on these populations implicitly take this uncertainty into

account. Certainly, this provides a more parsimonious

account of the current data than one in which separate

systems exist to estimate cue uncertainty.
6.3. Implications for depth perception in the natural world

The paper has focused primarily on the broad question

of whether the visual system optimally integrates multiple
visual cues to estimate 3D surface geometry. The results,

however, also speak to the basic question of when texture

cues will significantly contribute to human perception of

three-dimensional spatial layout. While some researchers

have found small weights for texture relative to stereo,

others have found larger weights. Rather than being

contradictory, the results elucidate those stimulus con-

ditions in which texture information is and is not an ef-
fective cue to 3D surface geometry. It is clear from these

and other results (Frisby, Buckley, & Freeman, 1992,

1996) that texture is a highly salient cue to planar surface

orientation when surfaces are slanted significantly away

from the fronto-parallel. Other researchers have studied

texture and stereo cue integration for surface curvature.

These results suggest that texture is a weak cue when

surfaces curve in a plane aligned with the line of sight (e.g.
when lines of curvature project to straight lines in the

image, as with an upright cylinder) (Johnston et al.,

1993). When surfaces are oriented so that the surface

curves in a direction not aligned with such a plane, the

curvature becomes more apparent in the curvilinear dis-

tortion of textures and texture becomes a stronger cue

(Frisby et al., 1996). We have performed a number of

ideal observer simulations which suggest that this is a
simple reflection of the informational structure of texture

patterns, however, it may also reflect specific mechanisms

tuned to apparent flow in projected texture patterns

(Knill, 2001; Li & Zaidi, 2001; Zaidi & Li, 2002). In

previous work we have also shown that the skew sym-

metry in projections of planar symmetric figures provides

a stronger cue to surface orientation at high slants

(Saunders & Knill, 2001). Finally, Tittle and colleagues
have shown that texture and shading information domi-

nate for judgments of curvature magnitude, while stereo

disparity information dominates for judgments of the

local shape index (reflecting the change from elliptical

through cylindrical to hyperbolic surfaces) (Tittle, Nor-

man, Perotti, & Phillips, 1997). Taken together, these

results indicate that pictorial cues like texture and con-

tour can provide strong cues to surface layout––some-
times stronger than stereo––even at small viewing

distances, but that their importance depends on their

relative uncertainty for the scene property of interest.
6.4. Conclusions

The subjective uncertainty of both stereo and texture

information for surface slant varies as a function of

surface slant itself. The effect is strongest for texture,

which is unreliable at low slants but very reliable at high

slants. For all subjects, the ratio of the texture cue un-

certainty to stereo cue uncertainty decreases (texture
becomes more reliable) as surface slant increases. This

predicts that subjects should effectively give progressively

more weight to texture information as surface slant in-

creases when estimating slant. Our data confirms that

subjects behave in exactly this way. Subjects� only devi-

ation from optimality is that they give somewhat more

weight to stereo on average than the threshold data

would predict. While this may reflect some degree of sub-
optimality in the visual system, it might also reflect a

mismatch between the stereo information in the stimuli

used to measure stereo uncertainty and the stimuli used

to measure cue weights. Subjects also show large indi-

vidual differences both in the uncertainty with which they

can make slant judgments from individual cues and in

the relative weights that they give to the cues. Much of

the variance in the weight differences, however, is ac-
counted for by the differences in subjective cue uncer-

tainty. Taken together the results of the current

experiments are consistent with the hypothesis that the

human visual system is a subjectively ideal cue integra-

tor; that is, that its cue integration behavior is deter-

mined by the low level uncertainty in its ability to use

individual cues as information about slant.
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