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MT-aIAT: Integrating mouse tracking into
memory-detection autobiographical Implicit

Association Test

Abstract

This study assesses the validity of a newly integrated memory detection method,

MT-aIAT, which is a combination of the autobiographical Implicit Association

Test (aIAT) and the mouse-tracking method. Participants were assigned to steal

a credit card and then performed the aIAT while mouse tracker was recording

their motor trajectories. Replicating previous work, we found a RT congruency

e↵ect. Critically, the mouse trajectories indicate a congruency e↵ect and a block

order e↵ect, suggesting the validity of mouse-tracking technique in unraveling

real-time measurement of the IAT congruency e↵ect. Lastly, to test the com-

putational modeling in MT-aIAT, we posited a connectionist model combined

with the drift-di↵usion model to simulate participants’ behavioral performance.

Our model captures the ubiquitous implicit bias towards the autobiographical

event. Implications of the MT-aIAT in identifying autobiographical memories,

the combination of MT-aIAT with computational modeling approach were dis-

cussed.

Keywords: concealed memory detection, autobiographical IAT,

mouse-tracking, computational modeling

Preprint submitted to Behavior Research Methods September 18, 2021

Orla Camus




1. Introduction

Though a lie be well drest, it is ever overcome. The attempts to detect de-

ception and concealed memory by physiological and behavioral measurements

have evolved for more than a hundred years, captured a broad interest from

fields including psychology, forensic, neuroscience and even ethics (Agosta &

Sartori, 2013; Chassot et al., 2015; Verschuere et al., 2011; Vrij & Fisher, 2016;

Nahari, 2018). In this study, we focused on the autobiographical Implicit As-

sociation Test (aIAT) (Sartori et al., 2008; Agosta et al., 2011), one of the

recently developed behavioral procedures that bear promises in memory detec-

tion. Specifically, we proposed a modified computer-based aIAT paradigm, to

be combined with mouse tracking, a popular response measurement technique

as a mouse-tracking aIAT (hereinafter MT-aIAT). We applied the MT-aIAT

in a mock crime scenario to demonstrate how the aIAT can detect concealed

autobiographical memories, and we employed computational models to reveal

cognitive mechanisms underlying aIAT memory detection.

The aIAT is an adaptation of the Implicit Association Test (IAT) (Greenwald

et al., 1998). Unlike IAT that has been widely used in social cognition research

examining attitudes, the aIAT aims to identify the veracity of autobiographical

memories by assessing the associative strength between subjects’ autobiograph-

ical memories and objective events. Specifically, the aIAT requires participants

to categorize statements belonging to one of two categories – objectively true or

false statements (e.g., “I am in the experiment room” vs. “I am in a shop”) and

autobiographical statements that only half is true based on participants’ experi-

ence (e.g., “I stole a credit card” vs. “I copied the confidential information from

the computer”). The aIAT e↵ect is reflected by di↵erences in reaction time (RT),

and is usually quantified by D scores defined as the di↵erences of the averaged

RTs between incongruent and congruent conditions, divided by the pooled stan-

dard deviation((RTcongruent �RTincongruent)/SD)(Gonick et al., 1993). Larger

D scores would represent stronger aIAT e↵ects(Greenwald et al., 1998), such

that participants would associate one type of autobiographical statements with
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truth. Notably, the order of congruent and incongruent blocks may influence the

IAT e↵ect, such that the IAT e↵ect is larger when the congruent block is per-

formed first (Greenwald et al., 1998). When applying IAT method in empirical

studies, this order e↵ect should be considered.

Though the RT-based aIAT has been validated in memory detection, it is

not without limitations. For example, several studies show that manipulating

instruction of training or response strategies can beat the traditional aIAT (Hu

et al., 2012; Verschuere et al., 2009). Also, RT-based aIAT does not reveal the

real-time categorization processes, given that only the final behavioral output

(RT, accuracy) is recorded (Yu et al., 2012; Smeding et al., 2016). A promis-

ing approach to complete the aIAT is to provide a real-time measurement of

categorization by adding mouse-tracking indices (Duran et al., 2010). Analysis

of mouse-tracking data can capture the temporal dynamics of memory catego-

rization in terms of spatiotemporal patterns. As the mouse-tracking method

assumes that every individual has distinctive spatial and temporal motor pat-

terns and habits of computer mouse usage (Sartori et al., 2018), it provides in-

dividuals’ real-time categorization dynamics along a millisecond temporal scale

that allow the investigation of cognitive processing underlying memory detection

(Freeman et al., 2008, 2011). Meanwhile, strategic responding can be tracked

in the mouse trajectories, as the initial attraction to the other response should

be observable in the response curve (Sartori et al., 2018).

Recent work has successfully incorporated mouse-tracking with IAT. For

example, Yu et al. (2012) integrated the mouse tracking technique to a flower-

insect IAT and two implicit self-esteem IATs, which showed both classical RT-

based IAT e↵ects and the potential of mouse trajectories in revealing the un-

derlying process of IAT. Monaro et al. (2021b) also demonstrated the e↵ec-

tiveness of mouse-tracking IAT to assess implicit preferences towards social

networks such as Facebook and Twitter, extending the MT-IAT to a novel

field such as consumer research. The covert nature of mouse tracking and the

real-time, continuous motor trajectories are also instrumental in memory de-

tection tasks (Sartori et al., 2018; Papesh & Goldinger, 2012). For instance,
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in a word recognition task, participants made new/old decisions while being

tracked to their mouse coordinates and then underwent a confidence assessment

(Papesh & Goldinger, 2012). By examining response trajectories and subse-

quent confidence, the researchers found stronger memories corresponded to fast

linear movements, while weaker memories produced slower curvilinear move-

ments. Taken together, mouse-tracking could provide continuous spatiotempo-

ral information in assessing attitudes and memory strength. Based on mouse

tracking’s advantage in unraveling real-time mouse trajectories, we combined

mouse-tracking with aIAT to test the e↵ectiveness of the mouse tracking-based

aIAT method in detecting autobiographical memories.

Studies have also found discrepant stimuli modality e↵ect on IAT e↵ect

size (e.g., Dasgupta et al., 2000; Foroni & Bel-Bahar, 2010). Picture-IATs, in

general, are associated with a smaller IAT e↵ect than word-IATs (Nosek et al.,

2002; Mitchell et al., 2003). Although previous studies asked participants to lie

to words (Wu et al., 2009) or pictures (Dong et al., 2010), few studies compared

di↵erent modalities in memory detection tests. In our MT-aIAT, we will use

both picture and word stimuli to examine the detection e�ciency for di↵erent

modalities (picture vs. word). The finding would contribute to the refinement

of MT-aIAT method as a prerequisite for practical application.

RTs and mouse-tracking data of MT-aIAT can also be incorporated with

computational modeling. A commonly used model in RT-based choices is the

drift-di↵usion model (DDM), which has been proved to be a powerful method

for revealing internal properties of decision making process of both human and

rodents (Brunton et al., 2013). In traditional DDM, the information begins at

the postulated position z and accumulates with time at a speed v. The accumu-

lation of information includes systematic as well as random influences. Decision

is made when the accumulated evidence reaches the threshold (Klauer et al.,

2007). The DDM parameters are gained through data fitting and have been im-

plicated in explaining RTs during value-based decision making under low and

high time pressure (Pedersen et al., 2017). To our knowledge, the IAT has only

been modeled with the traditional DDM (Klauer et al., 2007; Van Ravenzwaaij
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et al., 2011), which is not able to connect with mouse tracking trajectories,

because it mainly focuses on simulating the distribution of RTs and the fitted

parameters do not have temporal dynamics. Following Wong’s (2007) work,

we focuses on temporal neural dynamics of decision processes and accurately

simulated the IAT e↵ect, allowing us to combine it with the mouse trajectories

and disassociate the sensory information and motor responses. Further, the

connectionist model quantifies the sensory information which bridge the gap

between the non- value-based experiment (MT-aIAT) with this precisely de-

scribed model, while the DDM models the behavioral performances. Therefore,

we would like to present the application of computational modeling in the MT-

aIAT method, and o↵er us a top-down computational basis of implicit bias and

explicit RT di↵erence

In summary, the specific objective of the current study is to: 1) validate the

MT-aIAT method by tracking both the classic IAT e↵ect index and the mouse

trajectories, and 2) test potential computational modeling approach to shed

light on the underlying mechanism of MT-aIAT decision process. We assume

that MT-aIAT is able to perform well on autobiographical memory detection

based on either RTs or mouse dynamic indices. It is predicted that the IAT

block order e↵ect will still exist in MT-aIAT, and that word stimuli will evoke a

stronger IAT e↵ect than picture stimuli as previous findings showed. Our work

goes significantly beyond the current literature by providing a newly adopted

memory detection paradigm integrating mouse-tracking with the aIAT, with

a more comprehensive analysis of the IAT e↵ect and relevant mouse-tracking

dynamics considering the e↵ect of block order and stimulus modality in aIAT.

Besides, we will attempt to use computational modeling for MT-aIAT simulation

and expect that our connectionist model can simulate the implicit bias consistent

with our empirical data by integrated with DDM.
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2. Methods

2.1. Participants

59 healthy undergraduate and graduate students (27 males, Mage = 21.36,

SD = 2.32) participated in this experiment. They were divided into congruent

block first MT-aIAT group (n = 33, 16 males, Mage = 21.48, SD = 2.67)

and incongruent block first MT-aIAT group (n = 26, 11 males, Mage = 21.19,

SD = 1.84) to balance and investigate the e↵ect of block order. To achieve

greater than 80% power to detect a large e↵ect of d = 0.80 at ↵ = 0.05 in our

analyses of paired t-tests, we calculated the minimal sample size, which was

14, using the package pwr in R (Champely et al., 2018). We oversampled and

recruited 33 participants for the congruent block first group and 26 participants

for the incongruent block first group. All the participants were right-handed

with normal or corrected-to-normal vision, and had not participated in any

similar studies. Each participant signed informed consent prior to the formal

experiment, and the experimental protocol was approved by the local ethical

review committee. At the end of the study, the participants were paid 50-60

CNY.

2.2. Procedure

2.2.1. Mock Crime Session

The mock crime setting has been used in existed aIAT studies (e.g., Sartori

et al., 2008; Verschuere et al., 2009; Agosta et al., 2011; Hu et al., 2012). Par-

ticipants were asked to select one out of two envelopes deciding which task they

were going to perform. They were informed that one of the tasks was to steal a

credit card in a wallet, the other was to copy a confidential file on a computer.

The content in the two envelopes was the same – to steal the credit card (see

Verschuere et al., 2009), by which to bring participants a sense of involvement

to ‘commit the crime’ and drive them to perform the task with self-motivation.

After revealing the task in envelope, they were guided to another lab room

(mock crime room) to find the wallet and steal the credit card. To increase
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the ecological validity, the experimenter informed participants before the ses-

sion that they had to withdraw from the experiment if caught during the mock

crime session.

2.2.2. MT-aIAT Task

After the mock crime session, participants were arranged to sit in front of

a monitor in another testing room to complete the aIAT session. The aIAT

was performed using a procedure analogous similar to previous work (Sartori

et al., 2008; Marini et al., 2016), while implemented with a mouse tracker to

record the mouse trajectories. The stimuli were presented through Mousetracker

(http://www.mousetracker.org/), which recorded the mouse position about 70

times per second (70 Hz). Participants were instructed to click START at the

bottom center of the screen for each trial, then the event stimulus showed up

in the center. They were instructed to classify the stimulus by clicking the key

at the left upper corner of the screen (R1) or the key at the right upper corner

(R2). Participants were required to move the mouse quickly and accurately in

the task; otherwise, a reminder would appear to urge them to respond as quickly

as possible. The aIAT was structured in seven blocks, including three simple

blocks (block 1, 2, and 5) and four combined blocks (block 3, 4, 6, and 7):

• Block 1 (20 trials) required all participants to make a binary classification

based on the stimuli’s logical attributes: they were asked to discriminate

whether the sentence displayed was logically true (e.g., “I am on the third

floor”) or false (e.g., “I am in a shop”), and click the corresponding key

(R1 for true and R2 for false).

• In block 2 (20 trials) and block 5 (20 trials), participants classify the

stimulus only depending on whether it was associated with the crime-

relevant event (event 1) they had committed (e.g., “I steal a credit card”)

or the crime-irrelevant event (event 2) (e.g., “I copied the confidential

information from the computer”), and click the corresponding corner/area.

For the congruent block first MT-aIAT group, R1 corresponded to event
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1(the relevant criminal event), and R2 corresponded to event 2 in block2.

In block 5, the response pattern was reversed: R1 corresponded to event

2, and R2 corresponded to event 1. For the incongruent block first MT-

aIAT group, R1 corresponded to event 2, and R2 corresponded to event 1

in block 2; while in block 5, the response pattern was reversed.

• Block 3 (60 trials), block 4 (200trials), block 6 (60 trials), and block 7

(200 trials) were the combined blocks, requiring participants to categorize

both “objectively true or false” events and “crime -relevant or -irrelevant”

events. The four combined blocks were subdivided into congruent blocks

and incongruent blocks. In the congruent blocks, event 1 and the logically

true sentences shared the same motor response R1, while stimuli related

to event 2 and logically false sentences shared the same motor response

R2. In the incongruent blocks, the respondents learn a reversal of response

assignment where the two combinations change to ‘crime-relevant + false’

and ‘crime-irrelevant + true’. For the congruent block first group, block

3 and block 4 were congruent, and block 6 and block 7 were incongruent

(see Figure 2(a)). For the incongruent block first group, block 3 and block

4 were incongruent, and block 6 and block 7 were congruent (see Figure

3(a)).

With the aim to examine the stimulus type e↵ect in MT-aIAT, we implemented

both the picture and word stimuli for events. The stimuli set of picture MT-

aIAT included pictures related to the mocked criminal event and the stimuli set

of word MT-aIAT included short word descriptions of the mocked criminal event

(e.g., open the door). A complete set of stimuli used in the task are presented

in Supplementary Materials 1. All the participants were exposed to both types

of stimuli in the aIAT task at random.

The MT-aIAT task lasted for about 20 minutes. During the task, x and y

coordinates along the cursor trajectories were recorded.
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2.3. Statistical Analysis

Following Greenwald et al.(1998), we analyzed data obtained from block 4

and block 7. Participants with an error rate higher than 30% were excluded

from further analysis (one of the subjects was excluded for the high error rate

of 44%). To reduce the noise caused by trials where participants did not comply

with the instructions, we removed the trials with the error or slow response (RTs

> 5000ms, see Anikin & Johansson, 2019).

All analysis of behavioral data was done through R (version 4.1). Each

participant’s D score of aIAT was calculated according to the participant’s be-

havioral performance di↵erences between the congruent blocks and incongruent

blocks. To investigate the IAT e↵ect, we firstly ran paired t-tests on RTs and

mouse geometric indices between congruent and incongruent trials of the two

groups separately. Then we performed a three-way repeated-measures analy-

sis of variance (ANOVA) on RTs to explore potential e↵ects, with conditions

(congruent vs. incongruent), event types (the crime-relevant event vs. the

crime-irrelevant event), and stimulus modalities (word vs. picture) as inde-

pendent variables. A two-way ANOVA with event type and logical attributes

(true/false) as independent variables on RTs was performed to particularly ex-

amine the impact of event type and congruency that we focus on the most.

2.4. Simulations of Reaction Time

2.4.1. Connectionist Model

The connectionist model is comprised of four neural sub-populations that

respond to the perception of four features, including true (True), false (False),

crime-relevant (CR), and crime-irrelevant (CI) within the agent (see Figure

4(a)) (Bedder et al., 2019). When the agent perceives its own features, a neuro-

modulatory signal allows synaptic connections between active sub-populations

to be strengthened by a Hebbian learning rule (see Figure 4(a)) (Hebb, 2005).

In this case, the simulated agent committed crime-relevant events as our partici-

pants did, such that the connectionist model comes to encode strong associations

between neurons encoding true and crime-relevant features. During subsequent
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perception, sensory input to sub-populations encoding the features of that agent

generates additional activity in the network via recurrent synaptic connections

if those features overlap with the encoded features(see Figure 4(c, d)). For

detailed algorithms, see Supplementary Materials 2.

2.4.2. Drift-Di↵usion Models (DDM)

Behavioral performance on the IAT can be modeled with DDM(Wong et al.,

2007; Klauer et al., 2007; Van Ravenzwaaij et al., 2011) consisting of two self- ex-

citatory but mutually inhibitory neural populations(Bedder et al., 2019). These

two neural populations code for left and right motor outputs respectively(see

Figure 5(a)). External sensory evidence integrated with noise accumulates until

the firing rate of one population reaches a pre-defined decision threshold(Bogacz

et al., 2006; Koop & Johnson, 2013; Ratcli↵ & Rouder, 2000). The time taken

to reach the decision threshold produces an RT, while the winning population

corresponds to the decision made. In our simulations, the sensory evidence

provided to each DDM motor population in each IAT trial is determined by

activity in the connectionist model (see Figure 5). Neurons coding for the IAT

stimulus receive a set level of external sensory input, while additional input to

either motor response population arises from recurrent excitation within the

connectionist model. Obviously, the level of the total input of the left neural

population in the congruent condition is larger than the right one or either in

the incongruent condition (indicated by thicker colored arrows in Figure 5). As

a result, the left neural population in the congruent condition is the earliest one

to reach the threshold; thus, the participants were most likely to choose the left

option, and the RTs of congruent condition was significantly smaller than that

of incongruent condition. For detailed algorithms, see Supplementary Materials

2.
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2.5. Mouse-Tracking Data Analysis

2.5.1. Mouse Trajectory Preprocessing

Analogous with statistical analysis, we extracted data from block 4 and block

7, and excluded subject 106 for his high error rate (44%) and removed the trials

with the error or slow response (RTs > 5000ms)(Anikin & Johansson, 2019).

Standard mouse-tracking preprocessing was conducted temporally and spatially

(Freeman & Ambady, 2010). We rescaled all responding mouse trajectories into

standard coordinate space (top left: [-1, 1]; top right: [1,1]) so that the cursor

always started at [0,0]. The duration of each trial was sliced into 101 identical

time bins using linear interpolation to permit the average of their length across

multiple trials (see Spivey et al., 2005; Dale et al., 2007; Freeman et al., 2008,

2010; Duran et al., 2010; Sullivan et al., 2015).

2.5.2. Mouse Trajectory Measurements

To get a trial-by-trial category co-activation index, we calculated the max-

imum perpendicular deviation (MD), the area under the curve (AUC) and the

mean maximum deviation (MAD) of each mouse trajectory by R package Mouse-

trap (Kieslich & Henninger, 2017). In the two-choice mouse-tracking tasks,

deviation in the mouse trajectory of a subject toward an opposite category re-

sponse (indexed by MD) is a well-validated measure of the extent to which that

other category is also activated during the perceptual decision process (Spivey

& Dale, 2006; Freeman & Ambady, 2010; Freeman et al., 2011).

2.5.3. Temporal Analysis

We averaged all mouse trajectories into four conditions (congruent and the

crime-relevant event, congruent and the crime-irrelevant event, incongruent and

the crime-relevant event, incongruent and the crime-irrelevant event) after pre-

processing the mouse trajectories. To test the significant temporal di↵erence

between trajectories statistically, we calculated the positions along with time

bins of every trial in two conditions (congruent vs. incongruent) and compared

them through paired t-test(Chemin et al., 2018; Kieslich & Henninger, 2017).
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Besides, we splited trials into crime-relevant and crime-irrelevant events, further

examined the discrepancy between the two conditions (congruent vs. incongru-

ent).

2.5.4. Trajectory Analysis

A linear regression is performed to examine how the trajectory angle de-

pends on each stimulus of di↵erent conditions in every normalized time point

(Sullivan et al., 2015). We normalized the trajectories angles so that +45° al-

ways indicated a direct movement to the right, 0° indicated a movement straight

upward, and -45° indicated a direct movement to the left. To quantify the stim-

ulus intensity, we made use of the outputs of the connectionist model where

stimuli related to the crime-relevant or true events induce higher firing rates.

These regressions were estimated at the individual level. The relevant estimated

coe�cients (�) were pooled across congruent and incongruent conditions.

3. Results

3.1. Results from Merged Two Groups

The data for the following analysis was based on RTs and mouse indices in

block 4 and block 7 in both congruent and incongruent block first groups. The

error rate of the congruent condition was 0.044 and the incongruent condition

was 0.25.

3.1.1. RTs and D Score

To analyze the RTs of the current MT-aIAT, we conducted analysis includ-

ing an ANOVA and paired t-tests. For the ANOVA, we firstly considered the

block order (congruent or incongruent block first) as between-subjects variable,

condition (congruent or incongruent) and event type (crime-relevant or crime

irrelevant event) as within-subjects variables. The results indicated that no sig-

nificant main e↵ect of block order on RTs was found (F (1,57) = 0.58, p = 0.45,

⌘2p = 0.010), but a significant main e↵ect of condition (F (1,57) = 92.81, p <

0.001, ⌘2p = 0.156). There was also an interaction between the order and the
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condition (F (1, 57) = 30.03, p < 0.001, ⌘2p = 0.056) (see Figure 6). The post hoc

analysis showed that both orders indicated a strong IAT e↵ect (i.e., longer RTs

for incongruent block. Congruent block first: t = -3.17, p = 0.0027; incongruent

block first: t = -10.00, p < 0.001), and incongruent block first group showed a

bigger IAT e↵ect (t = 5.48, p < 0.001). Also, longer RTs in incongruent con-

dition than congruent condition were found as expected (p < 0.001), for both

the crime-relevant and crime-irrelevant events (see Figure 1(b)). Furthermore,

RTs to picture stimuli were generally shorter than to word stimuli(t(57) = -9.93,

p < 0.001, 95% CI = -218.24 to -144.97, Cohen0s d = 1.30) (picture-congruent:

M = 1195.27, SD = 218.23; picture-incongruent: M = 1433.89, SD = 416.15;

word-congruent: M = 1359.05, SD = 276.71; word-incongruent: M = 1592.95,

SD = 362.10)(see Figure 1(a)).

Weighted D scores of each participant were calculated across block 4 and

block 7 (for a detailed algorithm, see Greenwald et al., 2003). A negative D score

means that RTs were faster in congruent condition than incongruent condition,

and a bigger absolute value of D score represents a stronger IAT e↵ect. Since

the connectionist model generated di↵erent firing rates of task-relevant items

and task-irrelevant items in di↵erent conditions (Bedder et al., 2019), sensory

evidence, which was proportional to the di↵erence in firing rates of di↵erent

conditions, would be diverse, thus a↵ected the accumulation process in DDM

and the final RTs. We investigated the IAT e↵ect of crime-relevant and crime-

irrelevant, respectively. Specifically, there was no significant discrepancies of D

score between crime-relevant and crime-irrelevant (t(57) = -0.95, p = 0.35, 95%

CI = -0.15 to 0.053, Cohen0s d = 0.12). But crime-relevant event possessed a

stronger IAT e↵ect (D score of the crime-relevant event: M = -0.37, SD = 0.36;

D score of the crime-irrelevant event: M = -0.32, SD = 0.45). A significant

IAT e↵ect of both word and picture stimuli was also observed (D score of word

stimuli: M = -0.34, SD = 0.39, t(57) = -6.48, p < 0.001, 95% CI = -0.44 to

-0.23, Cohen0s d = 1.01; D score of picture stimuli: M = -0.38, SD = 0.41,

t(57) = -7.09, p < 0.001, 95% CI = -0.49 to -0.27, Cohen0s d = 1.01), but there

was no significant di↵erence on IAT e↵ect between the two modalities (t(57) =
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1.00, p = 0.32, 95% CI = -0.14 to 0.046, Cohen0s d = 0.13).

3.1.2. Mouse Indices

We compared the MAD values of two conditions (congruent: M = 0.44,

SD = 0.20; incongruent: M = 0.51, SD = 0.19) and observed a significant

congruency e↵ect on MAD (t(57) = -3.45, p < 0.001, 95% CI = -0.11 to -0.028,

Cohen0s d = 0.45). Other results considering mouse indices are illustrated

in the Figure 1(c-e). Similar to RTs analysis, the analysis of mouse indices

also separately examines the IAT e↵ect in the processing of crime-relevant and

crime-irrelevant event. Significant di↵erences of MAD and AD both in the

crime-relevant event between congruent and incongruent blocks were shown by

the results (MAD: t(57) = -2.57, p = 0.013, 95% CI = -0.15 to -0.018, Cohen0s

d = 0.34; AD: t(57) = -2.62, p = 0.01, 95% CI = -0.047 to -0.0062, Cohen0s

d = 0.37), while there was no significant discrepancy for AUC in any pair of

comparisons.

3.1.3. Trajectory Analysis Results

In the temporal trajectory analysis, the aggregated trajectories of two blocks

(see Figure 7(c)) and two events in each block (see Figure 7(f)) were derived.

We performed paired t-tests on each normalized time point of two conditions

using R package Mousetrap (Kieslich & Henninger, 2017). The t-tests showed

that trajectories of two conditions had a significant discrepancy from the 50th

to 93rd time point (see Figure 8(c)). We then focused on the trajectories of each

event (see Figure 8(f)) and found a significant discrepancy only when processing

the crime-irrelevant event (the crime-irrelevant event: 17th - 86th time point).

We also did a regression analysis for the sensory evidence. The estimated

slope (�) was illustrated in Figure 9(c) across the 101 time windows. The

result showed that there was no significant di↵erence between the �s under two

conditions .
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3.1.4. Simulated Reaction Time

Our study simulated 59 agents with a connectionist model which consists of

N = 4 neurons that code for the crime-relevant, the crime-irrelevant, true, and

false events. We assumed that each neuron only encodes a single feature rather

than a conjunction of multiple features, because of simplicity only – the conjunc-

tive coding of features in the connectionist network would have no qualitative

e↵ect on the results. Finally, we did observe the IAT e↵ect in the simulation

and calculated the IAT score (IATscore = -0.22), which was close to the IAT

score of the congruent block first group (IATscore = -0.19). Compatible with

the empirical data, we demonstrated that simulated agents exhibit significantly

negative IAT scores, suggesting smaller RTs in congruent trials. Finally, we

regressed the sensory evidence on the trajectory angle in each time point to

investigate the impact of the stimuli on motor dynamics (Sullivan et al., 2015).

As shown in Figure 9, in the congruent block first group, stimuli in congruent

trials evoked a stronger e↵ect on mouse trajectories than in incongruent trials at

all time steps; in the incongruent block first group, stimuli in incongruent trials

had a stronger impact in the very early time step, but later it was exceeded by

congruent trials.

3.1.5. The Block Order E↵ect

According to Greenwald et al. (1998), the IAT e↵ect in the congruent block

first and incongruent block first condition may di↵er (Greenwald et al., 1998).

Inconsistent with previous studies, our results indicated a larger IAT e↵ect

for incongruent block first condition (congruent block first: IATscore = -0.19;

incongruent block first: IATscore = -0.49). To demonstrate the impact of block

order on the aIAT e↵ect, we further reported the independent analysis on the

congruent block first group and incongruent block first group.

3.2. Congruent Block First Group

We observed an overall high accuracy of MT-aIAT in two congruency condi-

tions (error rate = 0.12) and higher error rates of in incongruent condition than
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congruent condition (congruent block: 0.03; incongruent block: 0.22).

3.2.1. Reaction Time and D Score

Paired t-tests were performed to compare the RTs in the congruent and

incongurent conditions. We found significant shorter RTs for congruent asso-

ciation condition than incongruent association condition as expected (t(31) =

-2.13, p = 0.041, 95% CI = -179.326272 to -3.944326, Cohen0s d = 0.38), for

both the crime-relevant and the crime-irrelevant events stimuli (see Figure 2(c)).

Furthermore, RTs to picture stimuli were generally smaller than to word stimuli

(t(31) = -6.78, p < 0.001, 95% CI = -236.93 to -127.29, Cohen0s d = 1.20) (see

Figure 2(b)).

Weighted D scores (Greenwald et al., 2003) of each participant were calcu-

lated across block 4 and block 7. Specifically, there was no significant discrep-

ancies of D score between crime-relevant and crime-irrelevant condition (t(31)

= -1.98, p = 0.057, 95% CI = -0.28 to 0.0041, Cohen0s d = 0.35), but crime-

relevant event possessed a stronger IAT e↵ect (D score of the crime-relevant

event: M = -0.31, SD = 0.40; D score of the crime-irrelevant event: M =

-0.18, SD = 0.45). Also, we observed a significant IAT e↵ect on word and pic-

ture stimuli (D score of word stimuli: M = -0.28, SD = 0.42, t(31) = -3.74,

p < 0.001, 95% CI = -0.4384126 to -0.1289101, Cohen0s d = 0.66; D score of

picture stimuli: M = -0.22, SD = 0.38, t(31) = -3.12, p < 0.001, 95% CI =

-0.35879628 to -0.07531092, Cohen0s d = 0.55), but there was no significant

di↵erence between them (t(31) = -1.12, p = 0.27, 95% CI = -0.055 to 0.19,

Cohen0s d = 0.20). Overall, these results showed that participants tended to

respond more quickly to picture stimulus in congruent blocks (picture congru-

ent: M = 1240.68, SD = 187.48; picture incongruent: M = 1300.93, SD =

254.24; word congruent: M = 1396.69, SD = 250.08; word incongruent: M =

1532.55, SD = 340.63).
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3.2.2. Mouse Indices

To analyze mouse indices, we calculated the AD values in two conditions

(congruent: M = 0.12, SD = 0.055; incongruent: M = 0.13, SD = 0.058)

and performed a paired t-test comparing them where we observed a significant

discrepancy of AD in two conditions (t(31) = -2.34, p = 0.026, 95% CI = -0.029

to -0.0020, Cohen0s d = 0.41). Paired t-tests were also conducted comparing

AUC, MAD and AD, respectively, between di↵erent event type. The results were

illustrated in Figure 2(d-e) below. There was no significant AUC discrepancy

found. However, for MAD and AD, their values when responding to event 1 were

significantly larger than event 2 in incongruent blocks (MAD: t(32) = 2.24, p =

0.033, 95% CI = 0.0093 to 0.21, Cohen0s d = 0.42; AD: t(32) = 2.36, p = 0.025,

95% CI = 0.0045 to 0.063, Cohen0s d = 0.44). These results together suggested

MAD and AD might be good predictors of the autobiographical event.

3.2.3. Trajectory Analysis Results

In the temporal trajectory analysis, the aggregated trajectories of two blocks

(see Figure 7(a)) and two events in each block (see Figure 7(d)) were derived.

The paired t-tests were performed comparing two conditions on each normalized

time point using R package Mousetrap (Kieslich & Henninger, 2017). The results

showed that trajectories of two conditions had a significant discrepancy from the

53th to 94th time point (see Figure 8(a)). We then focused on the trajectories of

each event (see Figure 8(d)) and found that when accepting the irrelevant event

(the crime-irrelevant event) as the stimulus, the number of time steps on which

the trajectories of two conditions had a significant di↵erence was more than the

crime-relevant event(the crime-relevant event: 56th-93rd time point; the crime-

irrelevant event: 14th-44th, 67th-84th time point). For each normalized time

window and each individual, the local angle trajectory was regressed against the

sensory evidence conducted by the connectionist model. The absolute values of

the estimated slope (�), illustrated in Figure 9(a) across the 101 time windows,

provided a measure of the degree to which the value information a↵ected the

process of choice at di↵erent times. A larger absolute value of (�) indicated a
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stronger e↵ect that the stimulus has on trajectory angle. The results showed

that the absolute value of regression coe�cient (�) in congruent trials was larger

in all time points, indicating that stimuli under this situation motivated stronger

resonance during the process of choice before the final decision.

3.3. Incongruent Block First Group

The following analysis was based on RTs and mouse indices in block 4 and

block 7 in the incongruent block first group. The error rate of the congruent

condition was 0.060, and incongruent condition was 0.29.

3.3.1. Reaction Time and D Score

Paired t-tests were performed to compare the RTs in the congruent and in-

congurent conditions. RTs in the congruent association condition was found

significantly shorter than in the incongruent association condition as expected

(t(25) = -9.69, p < 0.001, 95% CI = -340.19 to -220.92, Cohen0s d = 1.90),

for both the crime-relevant stimuli or crime-irrelevant stimuli (see Figure 3(c).

Consistent with congruent block first group, RTs to picture stimuli in incongru-

ent block first group were generally smaller than word stimuli (t(25) = -7.39,

p < 0.001, 95% CI = -231.43 to -130.54, Cohen0s d = 1.45) (picture congru-

ent: M = 1139.37, SD = 243.11; picture incongruent: M = 1613.09, SD =

520.18; word congruent: M = 1312.74, SD = 304.93; word incongruent: M =

1622.67, SD = 387.83) (see Figure 3(b).

Weighted D scores (for a detailed algorithm, see Greenwald et al., 2003) of

each participant were calculated across block 4 and block 7. Specifically, there

was no significant discrepancies of D score between crime-relevant and crime-

irrelevant (t(25) = 0.89, p = 0.38, 95% CI = -0.080 to 0.21, Cohen0s d = 0.18),

but opposite to congruent-block first group, crime-irrelevant event possessed a

stronger IAT e↵ect (D score of the crime-relevant event: M = -0.44, SD = 0.30;

D score of the crime-irrelevant event: M = -0.50, SD = 0.38). Also, we both

observed significant IAT e↵ects of word and picture stimuli (D score of word

stimuli: M = -0.40, SD = 0.34, t(25) = -5.92, p < 0.001, 95% CI = -0.54 to
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-0.26, Cohen0s d =1.16; D score of picture stimuli: M = -0.58, SD = 0.33, t(25)

= -8.81, p < 0.001, 95% CI = -0.72 to -0.45, Cohen0s d =1.72), and there was

also significant di↵erence between them (t(25) = 3.00, p = 0.0060, 95% CI =

0.06 to 0.31, Cohen0s d =0.59).

3.3.2. Mouse Indices

We calculated the MAD values of two conditions (congruent: M = 0.46, SD

= 0.22; incongruent: M = 0.56, SD = 0.20) and performed a paired t-test where

we observed a significant discrepancy of MAD in two conditions (t(25) = -2.86,

p = 0.0084, 95% CI = -0.17 to -0.03, Cohen0s d =0.56). The results of other

mouse indices were illustrated in Figure 3(d-e). There was only a significant

discrepancy for AUC in the condition comparison ( t(25) = �2.21, p = 0.037,

95% CI = -0.08 to -0.003, Cohen0s d =0.43). The MAD and AD values of

the crime-irrelevant stimuli in incongruent blocks were significantly larger than

crime-relevant event (MAD: t(25) = 3.49, p = 0.0023, 95% CI = 0.088 to 0.35,

Cohen0s d =0.76; AD: t(25) = 3.12, p = 0.0054, 95% CI = 0.026 to 0.13,

Cohen0s d =0.68).

3.3.3. Trajectory Analysis Results

In temporal trajectory analysis, the aggregated trajectories of two blocks

(see Figure 7(b)) and two events in each block (see Figure 5(e)) were derived.

The paired t-tests were performed comparing two conditions on each normalized

time point using R package Mousetrap (Kieslich & Henninger, 2017). The results

showed that trajectories of two conditions have a significant discrepancy from

the 51st to 60th and 75th to 90th time point (see Figure 8(b)). We then focused

on the trajectories of each event (see Figure 8(e)). It was found that there were

more time steps with significantly di↵erent trajectories in the two conditions

when stimulated by crime-unrelated events than when stimulated by crime-

related events.

We also did a regression analysis for the sensory evidence. The estimated

slope (�) illustrated in Figure 9(b) across the 101 time windows. Opposite
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to the congruent block first group, the absolute value of regression coe�cient

(�) of incongruent trials had a peak and exceeded the congruent trials in the

early time steps and then, decreased to a very small value. Interestingly, the

estimated slope (�) of the latter congruent trials had a peak at around the

60th time step, which might be due to the association reactivation between the

autobiographical event and its attribute.

In summary, for the IAT e↵ect in the two groups with a di↵erent order,

incongruent block-first group indicated a stronger IAT e↵ect that RTs and all

mouse indices showed the congruency e↵ects.

4. Discussion

4.1. Validation: Behavioral Results and Mouse Indices in MT-aIAT

In general, the present results confirmed the validity of the MT-aIAT. Our

MT-aIAT approach replicated the classic RT-based congruency e↵ects observed

in RT results. Moreover, the analysis of the mouse dynamic indices also demon-

strated the congruency e↵ects in MT-aIAT. The overall IAT e↵ect in RTs and

the mouse geometric indices (e.g., MAD and AD) was well observed in the

merged data, regardless of the order of in/congruent blocks and stimuli modal-

ity (see Table 1, Figure 2 - 3) , indicating the robustness of MT-aIAT task in

detecting autobiographical memories. We did not compare RT-aIAT and MT-

aIAT directly as the MT-aIAT including multiple indices including RT, MAD,

AUC and AD etc.

Furthermore, our approach established the feasibility of the mouse-tracking

method, which can be conveniently integrated into an aIAT paradigm (e.g., Yu

et al., 2012; Monaro et al., 2021b). In spite of providing a continuous and dy-

namic view of the cognitive process, there are several other advantages to use

mouse dynamics as an indicator of memory detection. First, mouse-tracking

can be administered covertly, without participants’ knowledge of the memory

detection purpose(Sartori et al., 2018). Second, studies have shown high ac-

curacy of the false identity detection task based on mouse-tracking, indicating
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the reliability of mouse-tracking-based memory detection in specific contexts

(Monaro et al., 2017a,b). Third, the mouse-tracking technique can be easily

used among large samples (Sartori et al., 2018). Based on the above advan-

tages, mouse-tracking technology has some possible application prospects such

as false identity detection, concealed criminal memories detection, and malin-

gering in the clinical field (Rosenfeld, 2018; Monaro et al., 2021a). Further

investigation is needed to test the e↵ectiveness and accuracy of mouse-tracking

in various possible application contexts and combination with di↵erent memory

detection tasks.

4.2. Important Factors: Block Order and Modality

Our MT-aIAT method uncovered a congruency e↵ect after added two factors,

block order and modality, even though these two factors had some impact on

the IAT e↵ect size. In the congruent block first group, there was a weaker aIAT

e↵ect under four kinds of comparisons than in the incongruent block first group.

As other factors of the experiments have been well controlled, we attribute the

di↵erence to the block order e↵ect of MT-aIAT. This finding is contrary to

Greenwald et al. (1998), who found a stronger IAT e↵ect in the congruent block

first group. Such discrepancy could be attributed to the di↵erence between the

IAT and aIAT task.

The IAT is essentially a categorization task that probes participants’ im-

plicit attitudes through the process of categorizing di↵erent categories of stim-

uli, whereas detecting memory for autobiographical events with aIAT involves

the memory retrieval rather than simple categorization. It also seems possible

that this inconsistency is due to the impact of some procedural factors such as

the combination of word and picture stimuli, and the number of practice trials.

The relatively high error rate suggests that participants’ proficiency on the task

may have influenced the congruency e↵ect. It seems that to increase the num-

ber of practice trials to reduce the block order e↵ect. Also, this e↵ect could be

countered by giving pairings to di↵erent participants first when studying groups

of people. The present methods design did not try to reduce the block order
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e↵ect but to find which mouse-tracking indicators still showed a significant IAT

e↵ect under the influence of block order. We did observe robust IAT bias in

some conditions mentioned above, indicating that MAD and AD were reliable

indicators of the IAT e↵ect.

Previous studies showed that word-IAT presented a more substantial IAT

e↵ect than picture-IAT (Dasgupta et al., 2000; Foroni & Bel-Bahar, 2010). This

study found similar results that participants responded faster when viewing pic-

ture stimuli (see Table 2). However, the mouse indices showed a di↵erent pat-

tern (see Table 2). For MAD, picture stimuli in the incongruent block first and

merged groups showed a significant IAT e↵ect. For AD, trials with picture stim-

uli in all groups had a significant IAT e↵ect. For AUC, only picture stimuli in

the incongruent block first group had the IAT e↵ect. These results indicate that

the stimuli modality is more influential on RTs than on mouse dynamic indices.

A possible explanation for the modality e↵ect on RTs is that processing an ob-

ject picture (perceptual memory) requires less cognitive load than processing a

sentence or phrase (semantic and situational memory), which therefore reduces

the task di�culties (Dasgupta et al., 2000). There is an indication that as the

di�culty of the IAT task decreases, so does the magnitude of the IAT e↵ect (Das-

gupta et al., 2000). However, the stimulus modality e↵ect on mouse-tracking

indices was relatively weak. It seems that the stimulus modality only alters the

cognitive complexity of the task without influencing the general e↵ect of implicit

memory on individual’s other behavioral performance. Being the initial attempt

of applying di↵erent stimulus modalities and mouse-tracking techniques in aIAT

task, the present results alone cannot draw a general conclusion on how stimu-

lus modality a↵ects MT-aIAT. Further autobiographical-event-relevant studies

with more focus on the e↵ect of stimulus modality integrating mouse-tracking

are therefore suggested.

4.3. How Can New Computational Modeling Approaches Help

In MT-aIAT, When participants perceived a stimulus, the stimulus automat-

ically activates the concept itself as well as spreading activation to its linked

22



associations. The strength of the associations varies between congruent and

incongruent blocks. The well-documented finding in the literature is that acti-

vation spreads faster if the association between concepts is strong, and spreads

more slowly when the strength of association is weak (Verhulst & Lodge, 2013).

Meanwhile, cues of prior experience can then trigger an essentially ‘automatic’

pattern of activation in memory that can be described in neural network or con-

nectionist models(Hopfield & Tank, 1986; Queller & Smith, 2002) So according

to the analogous features of MT-aIAT and the connectionist model, we hypoth-

esize that the existence of objective descriptions can be disturbed or modified

by input of recalling of personal experience during MT-aIAT. Following previ-

ous work using output from the self-image network to drive a DDM of binary

decision making (Bedder et al., 2019; Wong & Wang, 2006; Wong et al., 2007),

we can also infer the magnitude and reactivation of the memory during the

response.

In our paper, we postulate a simple connectionist model to quantify the

strengths of sensory evidence as well as their associations and use the DDM to

model behavioral performance after perceiving sensory information. Specifically,

we use the sensory evidence derived from the connectionist model to drive the

DDM, measuring the extent to which the extracted information is integrated

into choice processes by measuring the coordinates along the cursor trajectory.

Additionally, we obtain the simulated RTs from the DDM to further observe

the IAT e↵ect. In sum, both our model and the traditional DDM can capture

the characteristics of IAT. For the future work, our attempts can also be used

in other similar paradigms that follow, such as aIAT and IAT in other contexts,

in combination with mouse tracking.

Connectionist models have a profound impact in cognitive science, partic-

ularly in the research of memory and perception. This framework assumes

that cognitive systems are information processing systems that take in external

sensory to form internal representations of the environment, based on which

people’s overt behaviors are generated. This framework codes autobiographical

events is likely to have been identified by neuroimaging studies which seek the
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neural correlates of self-recognition (Feinberg & Keenan, 2005; Keenan et al.,

2001). We presented that the connectionist model could o↵er a mechanistic

account of resonance with crime-related events, and explain mental associations

and their influence on the aIAT performance. Also, the temporal analysis of

mouse trajectories o↵ered a deeper insight into decision dynamics about how

much e↵ect the stimuli had on the mouse trajectories. It presented a mechanistic

account for implicit bias: it centered on a connectionist network (Hopfield, 1982)

composed of neurons responding selectively to di↵erent features of stimuli and

their attributes. Once this network learns associations between autobiographi-

cal stimuli and its attribute, the agent will generate recurrent excitation which

promotes total network output.

In standard binary decision making tasks, such as the moving dot paradigm

(Huk & Shadlen, 2005), sensory evidence in favor of each motor output is ex-

perimentally defined (i.e., as the relative proportion of dots moving in each

direction). Oppositely, MT-aIAT is not a value-based task, and thus we can

not infer the subjective value of each stimulus or precisely define the strength

of sensory evidence for each visual stimulus, making it challenging to examine

the latent evidence accumulating process in IAT. This recurrent network (Hebb,

1949) o↵ered us a way to quantify the sensory evidence (see equation (8)). It

learns through experience and repeated exposure to stimuli and adjusts the con-

nection weights, which echoes the mock crime session before the MT-aIAT task.

In this mock crime session, participants gradually established the associative

relationships between their attributes and crime events by stealing the credit

card. The connection adjustment schemes in recurrent networks are used for

processes usually thought of as “memory”. So the recurrent network hypothe-

sized here is maximally active when the agent perceives crime-relevant events,

analogous to the reactivation of memory.

By subsequently applying the output of the connectionist model, that is, the

reactivated memory, to a drift-di↵usion model of perceptual decision-making

(Wong et al., 2007; Wong & Wang, 2006), we are able to simulate the behav-

ioral performance on the IAT to measure the quantity of implicit bias. The
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drift-di↵usion model assumes that a binary decision making process equals the

accumulation of two sides of competing evidence. And the decision is made once

the one side of evidence reaches the threshold (Ratcli↵ & Rouder, 2000). So the

accumulation speed of the autobiographical association will be faster due to the

activation of memory. Consistent with the empirical data, our model illustrated

that simulated agents exhibited negative IAT scores.

Note that the inconsistency in the trend of e↵ect size changes across time

between the two groups shown in Figure 9 may be due to the block order e↵ect,

because these impacts on the mouse trajectory were counterbalanced in merged

data as the estimated coe�cients did not have any significant di↵erence. We also

observed a peak at around 60th time bin in congruent trials of the incongruent

block first group. It might be a recurrent resonance of autobiographical events,

indicating the existence of implicit bias (Bedder et al., 2019).

4.4. Limitations and Future Directions

As a preliminary attempt of incorporating mouse tracking with aIAT, the

current study is subject to limitations. First, the present findings do not support

the claim that the MT-aIAT is superior to standard aIAT. To verify the accuracy

advantage that mouse tracking brings to aIAT, additional experiments would

be desirable. Second, the scope of this study is limited to only one mock crime

condition in a laboratory context. Although we used a single experimental

scenario setting to better control experimental variables so that factors a↵ecting

IAT e↵ects, such as block order, could be e↵ectively investigated, it would also

make the generalizability of the findings limited. Third, the current study have

only preliminarily explored the implementation of computational modeling in

the MT-aIAT method. It did not compare di↵erent modeling account of MT-

aIAT and perform model comparison.

Taken together, the mouse tracking paradigm still has much room for fur-

ther exploration and practice in the future, especially in combination with IAT

and aIAT. Though some studies have shown high accuracy of the false identity

detection task based on mouse-tracking, indicating high reliability and validity
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of mouse-tracking-based memory detection in specific contexts (Monaro et al.,

2017a,b), further e↵orts need to be done in order to validate the predictive ac-

curacy of MT-aIAT and refine the compatibility of mouse-tracking and aIAT

in various contexts. As mouse-tracking is covert that the test can be admin-

istered to the subject without revealing its memory detection purpose (Sartori

et al., 2018), researchers should be aware of the massive ethical implications

of implementing a mouse-tracking-based memory detection task and give in-

formed consent to the subjects properly. Besides, a considerable controversy in

IAT and aIAT is that discrimination of e↵ect size on the individual level is not

strong enough (Blanton et al., 2009; Vargo & Petróczi, 2013; Greenwald et al.,

2015), future e↵orts on improving the predictive validity can be one step further

towards possible practical applications. Also, further research with computa-

tional modeling can be developed to reveal the possible cognitive process during

aIAT with the information provided by the mouse-tracking technique. Another

notable focus of research on the aIAT approach is the neurophysiological basis

such that future studies can exploit the investigation IAT brain mechanism as

an entry point to advance the exploration of the principles of deception behavior

as well as its detection.

To provide some reference for future studies that want to explore and improve

MT-aIAT, we list below some suggestions.

(1) An immersive instruction or cover story. The instruction was verbally trans-

ferred by the experimenter and try to increase the participants’ sense of

involvement.

(2) Combing with strict scene layout and ecological contexts. To control par-

ticipants’ autobiographical memory, we strictly fixed up the experimental

room so that all participants had to experience the identical procedure to

get the card. The application of MT-aIAT also calls for more ecological

autobiographical memory detection in di↵erent contexts.

(3) Reliable mouse-tracking technique. It is critical to record reliable mouse

trajectories in the task and provide a standard trajectory preprocessing
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that unified the mouse trajectories temporally and spatially, guaranteeing

the robustness of the mouse dynamic analysis.

Conclusion

In sum, this study assessed and confirmed the validity of MT-aIAT, with

mouse-tracking and computational modeling methods to probe into the cogni-

tive mechanisms by the MT-aIAT in a mock crime scenario. The mouse tracking

data with the temporal analysis can investigate the discrepancy between di↵er-

ent conditions at each time point. Taking the block order of the task and

stimulus modality into consideration, our approach suggested that the reaction

time, MAD and AD were reliable indices to detect autobiographical event. Fur-

thermore, a connectionist model was used to compute the sensory evidence of

each stimulus. We regressed the sensory evidence on the trajectory angle at

every time point in order to examine the impacts that the stimulus casts on

the decision-making process. Output of the connectionist model was then feed

intothe DDM to simulate the RT-based aIAT e↵ect, which were consistent with

our empirical data.

Declarations

Acknowledgments

This work is supported by National Natural Science Foundation of China

(U1736125) and SRG of the University of Macau. The authors have no conflicts

of interest to declare that are relevant to the content of this article. Besides,

we would like to thank Tianyu Ma, Miao Chang, and Yutong Guo for their

consistent help with the experiment. We would also like to thank all participants

that took part in the study and enabled this research to be possible.

Ethics Approval

The experimental protocol of this study was approved by the ethical review

committee of the Institute of Psychology, Chinese Academy of Sciences.

27



Consent to Participate

Informed consent was obtained from all individual participants included in

the study.

Open Practices Statement

The data and materials for all experiments are available on GitHub at

(https://github.com/andlab-um/MT-aIAT), and none of the experiments was

preregistered.

Availability of Data and Materials

The authors confirm that the anonymized behavioral data supporting our

main analyses are available on GitHub (https://github.com/andlab-um/MT-

aIAT).

Code Availability

The code that support the findings of this study are openly available in the

lab GitHub at (https://github.com/andlab-um/MT-aIAT).

Author Contributions

X. Xu and H. Wu conceived the research, H. Wu and X. Xu performed the

research, X. Xu and H. Wu analyzed the data, X. Xu, X. Liu, X. Hu and H. Wu

wrote the paper.

References

Agosta, S., Mega, A., & Sartori, G. (2011). Detrimental e↵ects of using negative

sentences in the autobiographical iat. Acta psychologica, 136 , 269–275.

Agosta, S., & Sartori, G. (2013). The autobiographical iat: a review. Frontiers

in Psychology , 4 , 519.

Anikin, A., & Johansson, N. (2019). Implicit associations between individual

properties of color and sound. Attention, Perception, & Psychophysics, 81 ,

764–777.

28



Bedder, R. L., Bush, D., Banakou, D., Peck, T., Slater, M., & Burgess, N.

(2019). A mechanistic account of bodily resonance and implicit bias. Cogni-

tion, 184 , 1–10.

Blanton, H., Jaccard, J., Klick, J., Mellers, B., Mitchell, G., & Tetlock, P. E.

(2009). Strong claims and weak evidence: Reassessing the predictive validity

of the iat. Journal of applied Psychology , 94 , 567.

Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. (2006). The

physics of optimal decision making: a formal analysis of models of perfor-

mance in two-alternative forced-choice tasks. Psychological review , 113 , 700.

Brunton, B. W., Botvinick, M. M., & Brody, C. D. (2013). Rats and humans

can optimally accumulate evidence for decision-making. Science, 340 , 95–98.

Champely, S., Ekstrom, C., Dalgaard, P., Gill, J., Weibelzahl, S., Anandkumar,

A., Ford, C., Volcic, R., De Rosario, H., & De Rosario, M. H. (2018). Package

‘pwr’. R package version, 1 .
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Tables and Figures

Table 1: The congurency e↵ect for di↵erent data.

Index P value of Data

Congruent Block First Incongruent Block First Merged

RT 0.041 * <0.001 *** <0.001 ***

MAD .055 .0083** 0.013*

AD .026* .0071** <0.001***

AUC .16 .037 * .012*

Note. P-values of paired t-tests of di↵erent indices between congruent and incongruent

trials. The results showed that IAT bias existed not only in reaction times but also

mouse geometric indices.* p<0.05, ** p<0.01,*** p<0.001
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Table 2: t tests between congruent and incongruent block of picture and word stimuli in each

group.

Index P value of Data

Congruent Block First Incongruent Block First Merged

RT-picture t = -1.88, p = 0.069 t = -5.32, p < 0.001 *** t = -4.74, p < 0.001 ***

RT-word t = -3.16, p = 0.0035 ** t = -8.47, p < 0.001 *** t = -6.95, p < 0.001 ***

MAD-picture t = -6.95, p < 0.001 *** t = -3.46, p = 0.0022 ** t = -3.68, p < 0.001 ***

MAD-word t = 0.60, p = 0.55 t = -0.65, p = 0.52 t = 0.01, p = 0.99

AD-picture t = -2.19, p = 0.037* t = -3.30, p = 0.0033 ** t = -3.71, p ¡ 0.001 ***

AD-word t = 0.41, p = 0.69 t = -0.89, p = 0.38 t = -0.26, p = 0.79

AUC-picture t = 0.13, p = 0.90 t = -2.64, p = 0.015 * t = -1.80, p = 0.078

AUC-word t = 0.96, p = 0.34 t = 0.054, p = 0.96 t = 0.77, p = 0.44

Note. For RT, word stimuli had a stronger IAT e↵ect than picture stimuli. For MAD,

picture stimuli in incongruent block first group and merged group had significant IAT

e↵ect. For AD, trials with picture stimuli in all groups had significant IAT e↵ect. For

AUC, only picture stimuli in incongruent block first group had IAT e↵ect.* p<0.05,

** p<0.01,*** p<0.001
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Figure 1: Behavioral results and mouse geometric indices of the merged data. (a) Mean

reaction times of word and picture stimuli under di↵erent conditions. (b) Mean reaction times

of autobiographical and irrelevant event under congruent and incongruent blocks. Significant

IAT bias can be observed in both events. (c-e) Mean MAD, AD, AUC of autobiographical and

irrelevant event under congruent and incongruent blocks. For MAD and AD, significant IAT

biases were observed in autobiographical event. For AUC, we did not observe any discrepancy

between two conditions.
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Figure 2: Experiment paradigm, behavioral results and mouse geometric indices of the congru-

ent block first group. (a) Experiment paradigm of the congruent block first group: congruent

block came first. (b) Mean reaction times of word and picture stimuli under di↵erent condi-

tions. (c) Mean reaction times of autobiographical and irrelevant event under congruent and

incongruent blocks. Significant IAT bias can be observed in both events. (d-e) Mean MAD

and AD of autobiographical and irrelevant event under congruent and incongruent blocks. Sig-

nificant IAT bias can be observed in the incongruent condition. Besides, we did not observe

any significant discrepancy with AUC.
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Figure 3: Experiment paradigm, behavioral results and mouse geometric indices of the in-

congruent block first group. (a) Experiment paradigm of the congruent block first group:

incongruent block came first. (b) Mean reaction times of word and picture stimuli under

di↵erent conditions. (c) Mean reaction times of autobiographical and irrelevant event under

congruent and incongruent blocks. Significant IAT bias can be observed in both events. (d-e)

Mean MAD and AD of autobiographical and irrelevant event under congruent and incongruent

blocks. No significant IAT biases were observed in autobiographical event. Only the di↵erence

of irrelevant events between in congruent and incongruent condition was significant. Besides,

we did not observe any significant discrepancy with AUC.
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Figure 4: (a) The structure of Connectionist Model. (b) The simulated agent committed

crime-relevant events as our participants did, such that the connectionist model comes to

encode strong associations between neurons encoding true and crime-relevant features. (c, d)

During subsequent perception, sensory input to sub-populations encoding the autobiograph-

ical feature of that agent generates additional activity via recurrent synaptic connections if

those features overlap with the encoded feature.
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Figure 5: The schematic overview of the drift di↵usion model (DDM). The DDM consists of

two self- excitatory but mutually inhibitory neural populations coding for left and right motor

outputs. In our simulations, the sensory evidence provided to each DDM motor population

in each IAT trial is determined by activity in the connectionist model. Neurons coding for

the IAT stimulus receive a set level of external sensory input, while additional input to either

motor response population arises from recurrent excitation within the connectionist model

(indicated by thicker colored arrows). Note that connections from the connectionist model to

the DDM are flexibly reconfigured between congruent and incongruent blocks.

42



Figure 6: Interaction between the order and conditions. Both orders showed strong IAT e↵ect

(congruent-block first: t = �3.17, p = 0.0027; incongruent-block first: t = �10.00, p <

0.001), and the incongruent-block first group had a significantly bigger IAT e↵ect ( t =

5.48, p < 0.001).
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Figure 7: (a-c) Aggregated mouse trajectories of the congruent block first group, the incon-

gruent block first group and the merged data under congruent and incongruent conditions.

All trajectories were remapped leftward. (d-f) Aggregated mouse trajectories of the congruent

block first group, the incongruent block first group and the merged data when viewing event1

and event2 under congruent and incongruent conditions. All trajectories were remapped left-

ward.
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Figure 8: (a-c) Aggregated mouse trajectories of the congruent block first group, the incon-

gruent block first group and the merged data under congruent and incongruent conditions.

All trajectories were remapped leftward. (d-f) Aggregated mouse trajectories of the congruent

block first group, the incongruent block first group and the merged data when viewing event1

and event2 under congruent and incongruent conditions. All trajectories were remapped left-

ward.
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Figure 9: The congruent block first group, the incongruent block first group, merged data: Es-

timated coe�ceints of linear regression that examined how the trajectory angle was dependent

on each stimulus of di↵erent condition in every normalized time point.
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Logically-true Logically-false

Chinese English Chinese English
我在北京 I am in Beijing. 我在国外 I am abroad.

我是女生 I am a female. 我是男生 I am a male.

我在三楼 I am at the third floor. 我在楼顶 I am at the top of the building.

我在房内 I am in a room. 我在商场 I am in a market.

我在楼里 I am in a building 我在浴室 I am in the bathroom.

II. Crime -relevant or -irrelevant events

Crime-relevant Crime-irrelevant

Chinese English Chinese English
找到钥匙 I found the key. 插入 u盘 I inserted the USB.

拿银行卡 I took the credit card. 找到插口 I found the USB port.

推开凳子 I pushed aside the chair. 找到密码 I found the keyword.

打开抽屉 I opened the drawer. 撕开信封 I opened the envelope.

翻开钱包 I opened the wallet. 复制文件 I copied the file.
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Supplementary Materials 1

Experimental stimuli used in aIAT task：

Word stimuli 

I. Logically -true or -false events



Picture stimuli

Crime -relevant or -irrelevant events

Crime-relevant Crime-irrelevant
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Supplementary materials 2

The present study used MATLAB for the simulations of RTs. The con-

nectionist model used in the present work is a simple recurrent neural net-

work (RNN), consisting of four artificial neurons that represent four features

(the crime-relevant event, the crime-irrelevant event, true, and false). The link

strengths among the neurons are the connection weights learned based on the

Hebbian learning rule [? ]. Assuming a fully-connected recurrent network, the

firing rate output ri of neuron i is controlled by a linear activation function

which transforms total input to a firing rate output, with a peak firing rate of

rmax = 10 Hz and a time constant of ⌧r = 10 ms (Eqs. (1) and (2)). The total

input to each neuron (Itot,i) is a sum of external sensory input (Iext,i) = 0.5 and

recurrent synaptic currents (Irec,i) (Eq. (3)). External sensory inputs occurs

when the agent received the corresponding stimulus. As is shown in Eq.(4),

recurrent synaptic currents are defined as the product of firing rates of con-

nected neurons rj and synaptic weights wij . These recurrent synaptic currents

contribute to the variations in the synaptic connection strength; that is, the

updated weights are the sum of pre-updated weights and recurrent synaptic

currents (Eq.(5)). Here we set the learning rate k = 2 ⇥ 10
5
. All synaptic

connections wij and firing rates ri are initially set to zero. Besides, we pre-

sume an abstract neuromodulatory signal e that distinguishes between periods

of encoding (e = 1) and retrieval (e = 0). In the encoding period, the network

builds associations between features belonging to the agent(the crime-relevant

event true) and the recurrent synaptic currents do not exist. During the period

of retrieval, recurrent synaptic currents are activated and passed to the next

neuron as input when the agent receives the features same to their own.

This dynamic system will finally reach a stable state (Eq.(2)), with firing

rates as the input of the drift-di↵usion model.

Itot,i =

8
<

:
Itot,i for Itot,i  rmax

rmax for Itot,i>rmax

(1)

1



⌧r
dri
dt

= �ri + Itot,i (2)

Itot,i = Iext,i + Irec,i (3)

Irec,i = (1� e)
jX

n=1

rjwij (4)

wij = wij + ekrirj (5)

The drift-di↵usion models (DDM) are established based on the two-alternative

forced choice tasks. In the DDM, two competing neuronal pools accumulate ev-

idence of motor responses on the left and right, respectively. When evidence

in one of the populations reaches the pre-determined firing rate threshold, the

motor response is enacted and the decision is made. In this study, we apply the

two-variable network model reported by ? ] and ? ](see Figure 6(a)). We ob-

tained the stimuli-driven input of the DDM from the connectionist model once

firing rates of it reach an equilibrium condition. We acquired each neuron’s

firing rate output from the connectionist model and subsequently calculated the

total firing rate output of each one of the motor populations. Then the level

of sensory evidence s’ is proportional to the di↵erence in total firing rate input

for each motor population, not including the firing rate activity produced by

external stimulation Iext (Eq. (8)). We made use of the sensory evidence s’ [? ]

to gain the input Istim caused by stimuli for each neuron population, which is

proportional to the sensory evidence s’ adjusted by a gain factor f = 0.45 and

a mean value of 0 = 30 Hz (Eq. (7)).

Ifix =

8
<

:
JA,ext(50 + 100exp[�(t� tfix)/⌧ad]) for tfix  t<tstim

JA,ext(6 + 44exp[�(t� tstim)/⌧ad]) for t>tstim
(6)

Istim,i = JA,extµ0(1 + fs
0
) (7)
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s
0
= (

X
rL �

X
rR)� Iext + 0.05 (8)

Fixation on the cross before every trial contributes to a small excitatory input

Ifix defined in Eq.(6). It is adjusted by a gain factor JA,ext = 1.1⇥ 10
3
nA/Hz

and shows an adaptation with a time constant ad = 40 ms. Each population

also receives noisy synaptic inputs with a mean value of I0 = 0.3297 nA and a

white noise component ⌘i(t) with an amplitude of �noise = 0.009 nA filtered by

a synaptic time constant of ⌧noise = 2 ms (Eq. (12)). Each population’s firing

rate ri (where i = L,R) is a function of the synaptic current input Ii described

in Eq.(2a) [see ? ], with parameters a = 270 Hz/nA, b = 108 Hz and d = 0.154

s.

Together with stimuli-driven input, fixation excitatory input and noise, the

excitatory and inhibitory synaptic couplings constitute the total synaptic input

to each population with Jii = 0.3275 nA and Jij = 0.1137 nA (Eq. (10)).

NMDA currents Si are manipulated by a dynamic system described in Eq. (11).

At last, we obtained the lower firing rate of two populations as the simulated

reaction time through Eq(9) with a = 270 Hz/nA, b = 108 Hz and d = 0.154 s.

ri = f(Ii) =
aIi � b

(1� exp[�d(aIi � b)])
(9)

Itot,i = JiiSi � JijSj + Istim,i + Ifix + Inoise,i (10)

dSi

dt
= �Si

⌧s
+ (1� Si)�f(Ii) (11)

⌧noise
dInoise(t)

dt
= �(Inoise,i(t)� I0) + ⌘i(t)

p
⌧noise�noise (12)
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