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Abstract 
 
When reminded of an unpleasant experience, people often try to exclude the unwanted 
memory from awareness in an effort to forget it, a process known as retrieval suppression.  
Yet, how fast can individual memories be targeted and controlled, and the neural dynamics in 
modulating item-specific cortical traces, remain elusive. Here, using multivariate decoding 
analyses on time-domain and time-frequency-domain EEGs, we found that retrieval 
suppression of aversive memories was distinct from retrieval and passive viewing, when 
given a reminder. Specifically, early elevation of mid-frontal theta power during the first 500 
ms distinguished retrieval suppression from passive viewing, suggesting that suppression 
recruited early active control processes. On an item-level, we could discern activities relating 
to individual memories during active retrieval - initially, based on perceptual responses to 
reminders (0-500 ms) and later, via the reinstatement and maintenance of the target aversive 
scenes (500-3000 ms). Critically, suppressing retrieval significantly weakened (during 420-
600 ms) and eventually abolished these item-specific cortical patterns till cue disappeared 
(1200-3000 ms), suggesting the successful exclusion of the unwelcome memory from 
awareness. Suppression of item-specific cortical patterns, particularly during an early 300-
680 ms time window, bore behavioral consequences in predicting subsequent episodic 
forgetting. These findings present a precise timeline on the suppression of specific 
unwelcome memories: upon perceiving an unwelcome reminder, people rapidly deploy 
inhibitory control to truncate retrieval within 500 ms, which likely terminate the reminder-to-
memory conversion at around 500 ms that would ordinarily arise through hippocampal 
pattern completion. We concluded that both rapid and sustained control are critical in 
abolishing cortical patterns of individual memories, limiting unwelcome awareness, and 
precipitating later forgetting. 
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Introduction  
 
Following a painful or traumatic event, the unwanted memory may come back to mind 
uninvitedly. Oftentimes, even seemingly innocuous objects can remind us of the trauma, 
triggering intrusive images, fear and avoidance behavior. When this happens, people tend to 
recruit top-down control processes to terminate unwelcome retrieval, a process known as 
retrieval suppression. Ideally, control processes need to be fast and to target individual 
memories well before they fully occupy our mnemonic awareness. To date, the precise timing 
and neural dynamics of retrieval suppression in weakening individual memories remains 
elusive. Specifically, how fast can people stop retrieving a specific memory, and how timely 
retrieval suppression contributes to successful forgetting?  
 
Employing techniques bearing millisecond temporal resolution including M/EEG, 
intracranial EEG and single-unit recording in human memory recall, research suggests a 
staged cued recall process: a memory reminder undergoes perceptual analysis along the 
occipital-temporal pathway and reaches the hippocampus in the first 500 ms. Afterwards, , 
reminder-triggered pattern completion processes occur at around 500 ms, driving cortical 
reinstatements of the target memory during the 500-1500 ms time window (Staresina & 
Wimber, 2019). In particular, successful recall is associated with enhanced encoding-retrieval 
neural pattern similarities in the hippocampus during 1000-1500 ms (Staresina et al., 2016). 
Moreover, neural firing in the hippocampus preceded and predicted spikes in the adjacent 
entorhinal cortex (EC) between 500-1500 ms, during which memory traces can be identified 
(Staresina et al., 2019). These results provide converging evidence suggesting that 
hippocampus pattern completion and subsequent cortical reinstatement would occur during 
500-1500 ms, supporting successful episodic recall.  
 
While these findings delineate how a simple reminder gives rise to vivid remembering, there 
are scenarios when retrieval is unwelcome and needs to be stopped. Neuroimaging evidence 
suggests that when seeing cues of unwanted memories, the prefrontal cortex exerts top-down 
inhibitory control over the hippocampus and the medial temporal lobes to down-regulate 
unwanted retrieval (Anderson et al., 2004; Depue et al., 2007). Furthermore, retrieval 
suppression weakens neural activities in the neocortex that are implicated in reinstating 
original memories (Depue et al., 2007; Gagnepain et al., 2014; Hu et al., 2017; Mary et al., 
2020). However, it remains elusive exactly when top-down control processes would weaken 
individual memories. To achieve timely control of unwanted memories, we hypothesize that 
inhibitory control needs to be engaged during or even before the time window when cue-to-
memory conversion occurs, i.e., within 500 ms after seeing the cues. This early inhibitory 
control process should disrupt pattern completion to prevent the full-blown recollection 
experience, via weakening and eventually abolishing item-specific cortical patterns during 
the prolonged memory reinstatement time window (e.g., 500-1500 ms).  
 
Despite EEG’s unparalleled temporal resolution, its relatively poor spatial resolution posits 
particular challenges in isolating item-specific memory representations. To tackle this 
challenge, we applied a relatively new multivariate pattern analysis (MVPA) method to scalp 
EEGs (Bae & Luck, 2018) when participants voluntarily retrieve or suppress the retrieval of 
unwanted memories (aversive scenes) in an emotional think/no-think paradigm (Anderson & 
Green, 2001; Depue et al., 2007; Küpper et al., 2014). Using data from all EEG sensors at 
once, we first applied multivariate EEG analysis to distinguish between different retrieval 
conditions, to identify suppression-related activity and its time course. In particular, we 
compared retrieval/retrieval suppression manipulations with a perceptual baseline condition, 
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in which no retrieval was involved. Pairwise condition-level decoding could unravel neural 
dynamics associated with retrieval and retrieval suppression, relative to the no-retrieval 
baseline. Driven by our research question, we are particularly interested in the role of early 
frontal theta within the first 500 ms, given frontal theta power increase has been related to 
top-down inhibitory control processes (Anderson & Hulbert, 2020; Cavanagh & Frank, 2014; 
Nigbur et al., 2011). 
 
To examine time-dependent evolution of item-specific cortical EEG patterns, we employed 
item-level MVPA within each condition. We then compared item-level decoding during 
retrieval with that from the perceptual baseline, the no-retrieval condition, to establish cue-to-
memory processing during voluntary retrieval. Afterwards, we delineated how retrieval 
suppression modulated item-specific cortical patterns, particularly focusing on the 0-500 ms 
and the 500-1500 ms windows. Regarding item-specific EEG activity, we focused on theta 
activity during the early 0-500 ms time window, given its roles in sensory intake and 
feedforward information flow originating from the sensory cortex (Bastos et al., 2015; Colgin, 
2013). For memory reinstatement, we examined 500-1500 ms alpha activity given it has been 
implied in working memory maintenance and reinstatement (Fellner et al., 2020; Jensen et al., 
2002). Comparing time-dependent evolution of item-specific cortical patterns between 
retrieval and retrieval suppression conditions, we could establish the timeline of inhibitory 
control in truncating individual memory traces.  
 
To anticipate, we found that retrieval suppression enhanced early control and attenuated item-
specific cortical patterns within the first 500 ms, probably disrupting the perception-to-
memory conversion processes. Retrieval suppression then weakened and abolished item-
specific cortical patterns during the 500-1500 ms memory reinstatement window in a 
sustained manner. These results were particularly pronounced among participants showing 
successful forgetting, whereas less successful forgetting was associated with insufficient 
mobilization of early control, and relapse of the unwanted memory during retrieval 
suppression.  
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Results  
 
Suppressing Retrieval Induces Forgetting of Emotional Memories  
 
Following the emotional Think/No-Think (TNT) task, participants completed a cued recall 
test during which they verbally described the aversive scene that they thought was linked to 
that cue. We coded and scored verbal descriptions of negative emotional scenes on 
Identification, Gist and Detail. Each of the three memory scores was submitted to a one-way 
repeated-measure (Think, No-Think and Baseline) analysis of variance (ANOVA). Results 
showed a significant condition effect on Identification F(1.87,72.93) = 7.35, p = .002, 
ηp

2=.159; Detail (F(1.93,75.2) = 13.79, p < .001, ηp
2=.261 and Gist (F(1.92,74.95) = 6.22, p 

= .004, ηp
2=.138). Planned contrasts showed that, confirming our hypotheses, participants 

showed significant below-baseline, suppression-induced forgetting on Identification, t(39) = -
2.07, p = .045, dz = 0.33, and Details, t(39) = -2.16, p = .037, dz = 0.34; whereas the 
forgetting effect on Gist was not significant t(39) = -1.58, p = .123, dz = 0.25, see Figure 1B).  
 

 
Figure 1. Experimental Procedure, Suppression-Induced Forgetting, Decoding Approaches 
and Condition-level Time-domain EEG Decoding Results. 
(A) The emotional Think/No-Think task (eTNT) included three sessions. 1) Encoding: Participants first learnt 
object-aversive scene stimuli pairings; and they also viewed object without any scene pairings (i.e., Perceptual 
Baseline); 2) Think/No-Think (TNT): Participants either retrieve (Think) or suppress the retrieval (No-Think) of 
negative scene memories. Participants were also presented with Perceptual Baseline trials without any memory 
retrieval; 3) Cued Recall: Participants viewed object cues and verbally described their associated scenes. 
(B) Suppression-Induced Forgetting on Identification, Gist and Detail from the Cued Recall.  
(C-D) An illustration of trial flow in the EEG-based eTNT, and the logic of decoding analyses. 
(E) Condition-level decoding based on time domain EEG revealed significant differences in all three pairwise 
comparisons. Colored disks along x-axis indicate significant clusters (permutation cluster corrected): No-Think 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.10.17.464746doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.17.464746


6 
 

vs Perceptual Baseline, 40-2460 ms, pcorrected < .001; Think vs Perceptual Baseline, 40-2800 ms, pcorrected < .001; 
Think vs No-Think, 140-2960 ms, pcorrected < .001. Shaded areas indicate standard errors of the mean (S.E.M). 
(F) Time domain Think vs. Perceptual Baseline decoding accuracies during 500-3000 ms was positively 
correlated with subsequent memory recall on Identification score (Think normalized by Baseline). 
 
 
Stopping Retrieval is Distinct From Not-Retrieving 
 
Retrieval suppression impaired unwanted memories, inducing forgetting of the aversive 
scenes and their episodic details. We next examined EEG activities that could distinguish 
between No-Think, Think, and Perceptual Baseline (i.e., no-retrieval) conditions. Based on 
time-domain EEGs, condition-level multivariate decoding analysis successfully distinguished 
retrieval from no-retrieval (T vs. PB, pcorrected < .001, Figure 1E, green). Confirming 
participants’ engagement in retrieving scene memories during Think trials, the Think vs. 
Perceptual Baseline decoding accuracies during 500-3000 ms predicted retrieval-induced 
facilitation in Identification: r = 0.33, p =.036; and Detail: r = 0.33, p =.041 (Figure 1F, also 
see Figure S2A). Furthermore, multivariate decoding not only distinguished retrieval 
suppression from voluntary retrieval (NT vs. T, pcorrected < .001, Figure 1E, purple), but also 
from perceptual baseline (no retrieval; NT vs. PB, pcorrected < .001, Figure 1E, red). Strikingly, 
the Think vs. No-Think differences started as early as 140 ms and persisted during the entire 
epoch until ~3000 ms.  
 
Similarly, when using time-frequency-domain EEGs, between-condition decoding revealed 
significant differences among all pairwise comparisons (Figure 2A-F). Seeking EEG 
evidence for an early, active control process, we found that within the first 500 ms, 
significant NT vs. PB decoding was driven by 4-8 Hz theta activity over the frontal and 
posterior brain regions (Figure 2E, 2H), which continued throughout the entire 3000 ms 
epoch. Examining how between-condition theta power differences contribute to decoding, we 
found that during 200-400 ms, retrieval suppression (vs. retrieval or no-retrieval) enhanced 
midline and right prefrontal theta power (NT > T, pcorrected = .007, Figure 2I; NT > PB, 
pcorrected = .002, Figure S1G). After this early theta enhancement, retrieval suppression 
reduced theta power from 500 to 3000 ms (NT < T, theta: pcorrected = .004, NT < PB, theta: 
pcorrected < .001). 
 
In addition to theta, we found that 9-12 Hz alpha activity drove significant condition-level 
decoding performance between 500 to 3000 ms (Figure 2D-F). Examining between-condition 
alpha differences suggest that retrieval suppression reduced alpha power during this time 
window (NT <T, pcorrected < .001; NT<PB, pcorrected = .002, Figure S1A-F). Based on a recent 
study suggesting that 1000-2000 ms alpha power reduction may indicate reduced rehearsal 
during memory control (Fellner et al., 2020),  we hypothesized that alpha-based between-
condition decoding may bear behavioral implications. Indeed, during the same 1000-2000 ms 
as in previous research, we found that NT vs. PB alpha-based decoding accuracies 
significantly predicted suppression-induced forgetting on Identification (r = -0.34, p =.034, 
Figure 2G, also see Figure S2B). This negative correlation suggests that reduced alpha power 
contributed to subsequent forgetting. Intriguingly, while alpha-based NT vs. PB decoding 
accuracies predicted suppression-induced forgetting, alpha-based T vs. PB decoding 
accuracies predicted retrieval-induced facilitation (statistically, a non-significant trend), with 
the difference being significant (Detail: z = 2.06, p =.039; Figure S2C). Together, these 
evidences suggested that early theta power elevation and subsequent theta/alpha power 
reduction supported active suppression that is distinct from not-retrieving.  
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Figure 2. The Condition-Level Time-Frequency Domain Decoding  
(A-C) Condition-level time-frequency decoding results. Frequency is log scaled with colorbar denoting 
decoding accuracy. Black outline highlights significant clusters against chance level (both cluster and 
permutation α are set at 0.05). 
(D-F) Decoding accuracies in A-C are averaged on theta (4-8 Hz) and alpha (9-12 Hz) bands. Disks at the 
bottom denote significant clusters of averaged accuracy against chance level (50%) with permutation correction. 
 (G) The alpha-based No-Think vs. Perceptual Baseline decoding accuracies during 1,000-2,000 ms negatively 
predicted subsequent memory recall. 
(H) Theta power on 0-500 ms distinguished NT vs. PB over frontal and posterior brain regions in channel 
searchlight decoding. Significant electrodes were cluster corrected and highlighted. 
(I) Theta power averaged on 200-400 ms was higher in NT than T. The increased theta power showed a frontal-
central distribution. Significant electrodes were cluster corrected and highlighted. 
 
 
Spatial Patterns in EEG Discern Individual Memories During Retrieval 
 
Whereas significant condition-level decoding indicates that retrieval, retrieval suppression 
and no-retrieval engaged distinct spatial-temporal EEG patterns, it remains unknown whether 
the scalp distribution of EEGs can discern individual memory traces of object-aversive scene 
pairings. We approached this question by conducting multivariate item-level decoding 
analyses in each condition, respectively.  
 
We first sought to establish whether scalp-EEG patterns can distinguish among individual 
items during retrieval. Indeed, time-domain EEG significantly distinguished between 
individual memories across the entire 0-3000 ms window (Figure 3A, pcorrected < .001). In 
sharp contrast, for Perceptual Baseline trials, above-chance decoding arose only in the 0-500 
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ms (to be precise, 60-640 ms, pcorrected < .001), but not in the subsequent 500-3000 ms time 
window (Figure 3C). To directly compare item-level decoding between retrieval and no-
retrieval, we repeated the analyses with 6 randomly sampled items from the Think condition, 
to match the item number in Perceptual Baseline (see Methods). We found that Think trials 
showed significantly higher item-level decoding accuracies than Perceptual Baseline trials 
during 360-1180 ms (pcorrected < .001) and 1220-1540 ms (pcorrected = .022, Figure 3K, purple 
disks).  
 
Given that participants learnt about object-scene pairings during Think trials but not during 
Perceptual Baseline trials, the 0-360 ms significant item-level decoding across both Think 
and Perceptual Baseline trials may reflect common visual-perceptual processing of object 
cues. In the later 360-1540 ms window, significantly higher decoding during Think trials than 
during Perceptual Baseline trials may reflect reinstatement and maintenance of distinct 
unpleasant scenes in mnemonic awareness. Another possibility, however, is that item-level 
decoding in the Think condition may simply reflect sustained attention to the unique object 
cues.  
 
To disambiguate these two possibilities, we examined brain regions giving rise to above-
chance decoding in Think trials using searchlight decoding (see Methods). Results showed 
that during the first 500 ms, occipital EEGs primarily drove the significant decoding, 
suggesting that visual-perceptual cue processing was the basis for item distinction (Figure 
3D). In contrast, during the subsequent 500-3000 ms, significant decoding involved the 
contributions of a distributed set of regions implicated in memory retrieval such as the right 
prefrontal and parietal-occipital cortex (Figure 3E). This finding suggests that item-level 
decoding beyond the first 500 ms may be dominated not by object cue perception, but rather 
the reinstatement of the associated scene memories implicated by the involvement of frontal-
parietal-occipital network. Consistent with this explanation, item-level decoding performance 
during the latter 500-3000 ms time window predicted Detail measure of scene memory (r = 
0.34, p = .034, Figure 3J), whereas the early 0-500 ms time window did not (r = 0.01, p 
= .946).  
 
In Perceptual Baseline trials, the same searchlight analysis showed that significant 0-500 ms 
decoding arose over a small cluster of occipital electrodes, suggesting that the classification 
relied on visual object processing (Figure 3H). In contrast, during the 500-3000 ms time 
window, no significant decoding was found at any electrode (Figure 3I, note that similar 
searchlight results were obtained when using 0-360 and 360-1540 ms time windows, see 
Figure S3A).  
 
In sum, during retrieval, time-resolved EEG patterns showed a staged cued-recall processing: 
during 0-500 ms, EEG patterns could discern perceived items over occipital region; during 
500-3000 ms, EEG patterns could distinguish among retrieved items over fronto-parietal-
occipital regions. Furthermore, higher item-level decoding accuracies predicted better 
memories only in this later, 500-3000 ms time window. 
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Figure 3. Item-level Time Domain Decoding 
(A-C) The item-level decoding patterns (averaged across participants) in each retrieval condition. Disks at the 
bottom indicate significant time clusters against chance level, with permutation cluster correction (αs = 0.05). 
(D-I) Channel searchlight analyses of time domain decoding during an early (0-500 ms) and a later time window 
(500-3000 ms). Colorbar indicates decoding accuracy. Electrodes with significant decoding accuracies are 
highlighted (permutation cluster corrected, αs = 0.05).  
(J) During Think trials, decoding accuracies averaged on 500-3000 ms predicted details of recalled emotional 
scenes. 
(K) Item-level decoding in Think (using 6 resampled items) is higher than Perceptual Baseline on 360-1180 ms, 
pcorrected < .001; 1220-1540 ms, pcorrected = .022. Disks at the bottom indicate cluster-corrected significant time 
clusters against chance level (green and blue for Think and Perceptual Baseline) or difference between the two 
conditions (purple). 
(L) Item-level decoding in No-Think (using 6 resampled items) is not significantly different from Perceptual 
Baseline. Disks at the bottom indicate significant time clusters against chance level (red and blue for No-Think 
and Perceptual Baseline). 
(M) Retrieval suppression significantly reduced item-level decoding accuracies on 420-600 ms compared to 
retrieval, with the right panel showing channel searchlight analyses on this time window. 
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Suppressing Retrieval Weakens and Abolishes Item-specific Cortical Patterns  
 
Building on these results, we next examined our key question: when and how does retrieval 
suppression modulate item-specific cortical EEG pattern? 
 
In the No-Think condition, item-level decoding accuracy was significantly above-chance 
until 1160 ms (pscorrected < .028), then dropped to chance-level till 3000 ms when the cue 
disappeared. Consistent with Think and Perceptual Baseline analyses, we used a priori 
defined time window 0-500 vs. 500-3000 ms to examine EEGs scalp distributions that 
contributed to decoding. We found that during 0-500 ms, item-level decoding was driven by 
occipital region activity, which resembled EEG distributions of Perceptual Baseline during 
the same 0-500 ms window (Figure 3F, 3H). During the subsequent 500-3000 ms, no brain 
regions contributed to item-level decoding (Figure 3G).  
 
In addition to scalp EEG distributions revealed by channel searchlight, confusion matrices of 
item-level decoding provided consistent evidence supporting the hypothesized staged 
retrieval suppression: we found significant above-chance between-item classifications in all 
three conditions during the first 500 ms, whereas distinctive classification patterns only 
remained in the Think condition during 500-3000 ms (Figure S3C-E).  
 
To gain a more precise understanding of the neural dynamics in suppressing individual 
memories, it is crucial to compare time-dependent evolution of item-specific cortical patterns 
between retrieval suppression and retrieval/no-retrieval conditions. A direct Think vs. No-
Think comparison of item-level decoding revealed that the retrieval suppression significantly 
reduced decoding accuracies on 420 to 600 ms (pcorrected = .044, Figure 3M left panel). 
Searchlight analyses during 420-600 ms revealed that, while voluntary retrieval engaged 
brain activity over frontal-parietal-occipital regions, retrieval suppression was only associated 
with occipital activity (Figure 3M right panel). When No-Think was directly compared to 
Perceptual Baseline (using 6 randomly sampled items from the No-Think condition), there 
were no significant decoding accuracy differences during the entire 0-3000 ms epoch (none 
of the differences survived permutation correction, see Figure 3L). 
 
Linking weakened item-level decoding with the early active control processes, we found that 
in the No-Think (vs. Think) trials, reduction of item-level decoding during 420-600 ms was 
preceded by enhanced 200-400 ms theta power over midline and right prefrontal cortex 
(Figure 2I). Critically, theta power elevation across this region were positively correlated 
with the 420-600 ms decoding accuracy reduction (r = 0.30, p = .064, Figure S3F), 
suggesting that higher theta power (No-Think > Think) was associated with lower item-
specific decoding accuracies (No-Think < Think).  
 
Together, beyond the active suppression evidence found on the condition level, these item-
level decoding results revealed a precise timeline on how retrieval suppression unfolded:  
inhibitory control was engaged within the first 500 ms upon encountering an unwelcome cue 
object, presumably before the cue-to-memory conversion process to obstruct retrieval and 
prevent reinstatement from happening. This early control weakened, and eventually abolished 
memory-specific cortical patterns during 500-3000 ms. 
 
 
Rapid and Sustained Suppression Led to Successful Episodic Forgetting  
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To understand how timing of suppression influenced subsequent forgetting, we divided 
participants into High- vs. Low-Suppression Groups based on the median-split of below-
baseline forgetting scores, i.e., NT-minus-BL Detail scores given the Detail score is a 
continuous measure, see Methods. We next compared the item-level decoding accuracies 
between Think and No-Think in these two groups. In the High-Suppression group (Figure 
4A), we found significant reductions of decoding during No-Think (vs. Think) trials on two 
time windows: 300-680 ms (pcorrected = .006) and 1140-1400 ms (pcorrected = .031). These 
differences may reflect an early top-down disruption of cue-to-memory conversion process 
around 500 ms, and a later weakening of item-specific cortical reinstatement patterns 
between 1000-1500 ms. In the Low-Suppression group (Figure 4B), however, the same 
comparison revealed no significant NT vs. T differences. Corroborating the putative role of 
early and timely suppression in forgetting, we found that item-level decoding accuracy during 
the early 300-680 ms was correlated with subsequent forgetting across all participants (r = 
0.35, p = .027, Figure 4C), suggesting that the more effectively the participants suppressed 
unwanted memories during 300-680 ms, the more likely suppression would cause later 
forgetting.  
 
We next compared item-level decoding between No-Think (using 6 randomly sampled items) 
and Perceptual Baseline conditions in these two groups. While we did not find between-
condition differences in the High-Suppression Group (Figure 4D), participants from the Low-
Suppression Group showed significantly higher decoding accuracies in No-Think trials than 
Perceptual Baseline trials toward the end of the epoch, i.e., 2300-2560 ms (pcorrected = .029, 
Figure 4E, purple dashed outline). Thus, less successful forgetting was associated with 
relapses during sustained control of unwanted memories. Together, these results highlighted 
that both early rapid, and later sustained control are important in successful forgetting. 
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Figure 4. Item-level Decoding Results in High- and Low-Suppression Group 
(A, B) Comparisons between Think and No-Think item-level decoding in High-/Low-Suppression Group, 
respectively. In the High-Suppression Group, Think vs. No-Think difference was significant on 300-680 ms and 
1140-1400 ms, while no difference was found in the Low-Suppression Group. 
(C) Across both groups, the averaged decoding accuracy on 300-680 ms positively correlated with participant’s 
suppression-induced forgetting, i.e. No-Think minus Baseline Detail score. 
(D, E) Resampled item-level decoding comparisons between No-Think and Perceptual Baseline in High- and 
Low-Suppression Group, respectively. In the High-Suppression Group, No-Think did not differ from Perceptual 
Baseline in item-level decoding accuracy, despite both showing above chance decoding within 0-500 ms. In the 
Low-Suppression Group, a significant difference between No-Think and Perceptual Baseline was observed on 
2300-2560 ms. 
Color disks at the bottom of each figure denote time clusters significantly above chance (permutation corrected, 
one-sided αs = 0.05). Purple dashed outlines denote significant time clusters between conditions/groups 
(permutation corrected, two-sided αs = 0.05). 
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Theta and Alpha Oscillations Track Item-Level Perception and Reinstatement 
Processes, Respectively  
 
While retrieval suppression modulated theta and alpha activity at the condition-level, it 
remains unclear how top-down suppression modulates item-specific EEG activity. We found 
that within all three conditions, 0-500 ms theta activity over occipital regions significantly 
distinguished among individual items, suggesting theta’s role in visual processing of 
individual cue object (pscorrected < .001, Figure 5 A-C, also see Figure 5 D-G). During 500-
3000 ms, retrieval vs. retrieval suppression showed divergent item-level decoding patterns: 
theta and alpha power drove significant decoding only during Think trials (theta: pscorrected 
< .027; alpha: pscorrected < .039, Figure 5D), but not during No-Think trials (Figure 5E). There 
was short-lived theta-driven decoding in Perceptual Baseline trials, which may reflect 
occasional perceptual processing of objects (theta: pscorrected < .011, Figure 5F). Channel 
searchlight analyses during 500-3000 ms revealed that alpha activity over the occipital-
parietal region contributed to decoding performance only in Think, but not in the other 
conditions (see Figure 5H), suggesting that alpha activity is linked with item-specific 
memory reinstatement processes. Hence, the lack of significant alpha-based decoding in No-
Think trials might reflect abolition of memory reinstatement processes.  
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Figure 5. The Item-level Time-Frequency Domain Decoding 
(A-C) Item-level time-frequency decoding results. Frequency is log scaled and colorbar denotes decoding 
accuracy. Black outline highlights significant clusters against chance levels (both cluster alpha and permutation 
α are 0.05, one-sided). 
(D-F) Decoding accuracies in A-C are averaged on theta and alpha bands. Disks denote significant clusters of 
the band-averaged accuracies against chance level (cluster corrected, one-sided αs = 0.05). 
(G) Item-level theta searchlight on 0-500 ms showed an occipital distribution in all three conditions. Significant 
channels are highlighted (permutation cluster corrected with one-sided αs = 0.05). 
(H) Item-level alpha searchlight on 1500-2000 ms showed that only in Think was alpha power able to 
distinguish among items. The alpha searchlight decoding in Think originated from the posterior region. 
Significant channels are highlighted (permutation cluster corrected with one-sided αs = 0.05). 
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Discussion 
 
Oblivion can be a blessing: suppressing unwanted memories frees our minds from troubling 
past, facilitates subsequent learning and planning, and promotes resilience following trauma 
exposure (Anderson & Hanslmayr, 2014; Gagnepain et al., 2014; Hu et al., 2017; Mary et al., 
2020). Particularly, avoiding retrieval of an unwelcome memory requires effort; it is not 
simply neglecting to engage an optional retrieval process when an unwelcome reminder 
appears, but rather requires an active inhibition mechanism that countermands retrieval 
(Anderson & Hulbert, 2020). Ideally, the act of inhibition should happen rapidly, especially 
when automatic retrieval of the unwelcome memory is to be prevented. Our results support 
this idea: successful forgetting was associated with 1) rapid deployment of inhibitory control 
and suppression of individual memory traces within the first 500 ms and 2) sustained control 
in weakening and abolishing item-specific cortical EEG patterns during 500-3000 ms.  
 
Integrating unparalleled temporal resolution afforded by EEG, and enhanced spatial 
resolution offered by multivariate pattern analyses, we provide three pieces of evidence 
suggesting that an early, active control process was critical in truncating retrieval of highly 
specific, individual memories. First, retrieval suppression enhanced midfrontal and right 
prefrontal theta activity within the first 500 ms, which distinguished itself from no-retrieval. 
Given the well-established evidence linking frontal theta and inhibitory control processes 
(Cavanagh & Frank, 2014; Nigbur et al., 2011), this result suggests that retrieval suppression 
engaged early inhibitory control processes in the first 500 ms upon seeing an unwelcome 
memory cue. Substantiating theta’s putative role in suppressing individual memories, we 
found that the 200-400 ms frontal theta power elevation predicted subsequent reduction of 
item-level decoding accuracies during 420-600 ms, which we discuss below.  
 
Second, retrieval suppression (vs. retrieval) significantly weakened item-level decoding 
during 420-600 ms, a time window that coincides with the perception-to-memory conversion 
process occurring at around 500 ms. Furthermore, at around 500 ms, hippocampus-dependent 
pattern completion would trigger cortical reinstatement of target memories, accompanied by 
vivid recollection (Colgin, 2016; Lavenex & Amaral, 2000; Staresina & Wimber, 2019). 
Therefore, successful retrieval suppression should precisely target this time window to 
truncate the perception-to-memory conversion processes, which then prevents unwanted 
memories from reinstating.  
 
Indeed, a third finding we regard as important is that weakening of item-specific cortical 
pattern during this early time window was associated with episodic forgetting. Specifically, 
High-Suppression participants showed significantly reduced item-level decoding accuracies 
(No-Think < Think) on 300-680 ms, whereas Low-Suppression participants did not show 
such early reduction. Across all participants, reduction of No-Think item decoding accuracies 
within 300-680 ms were correlated with subsequent suppression-induced episodic forgetting. 
This result provides direct evidence supporting the critical role of an early suppression effect 
for participants to forget unwanted memories. Given that the hippocampus-dependent pattern 
completion processes occur at around 500 ms (Staresina & Wimber, 2019), this finding again 
suggests that for successful forgetting, top-down inhibitory control shall be engaged well 
before memory reinstatement during 500-1500 ms.  
 
Examining time-dependent evolution of item-specific cortical patterns suggests that not only 
early, rapid control is important, but also sustained control is necessary for successful 
forgetting. While retrieval suppression significantly weakened item-specific cortical patterns 
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starting from 400 ms, individual memories could still be identified till 1200 ms. Reduced yet 
still discernible item-specific cortical patterns during 420-1200 ms may call for sustained 
control to keep unwanted memories out of awareness, a process supported by reduced alpha 
power during later stages of retrieval suppression. Indeed, item-specific cortical patterns were 
eventually abolished since 1200 ms, till the cue disappeared at 3000 ms. Together, these 
temporal characteristics revealed a fine-grained timeline in retrieval suppression of aversive 
scenes: early control processes truncated retrieval during the perception-to-memory 
conversion time window (e.g., ~420-600 ms), with sustained control processes down-
regulating unwanted memories (e.g., ~1200 ms) and eventually abolishing item-specific 
cortical patterns (1200-3000 ms).  
 
Intriguingly, during the time window of 500-3000 ms when cortical reinstatement would 
ordinarily occur and give rise to full-blown recollection, two specific time windows bore 
relevance with active forgetting. First, during 1140-1400 ms, high-suppression participants 
showed significantly reduced item-level decoding accuracies in retrieval suppression (vs. 
retrieval). Second, during 2600-2800 ms, low-suppression participants showed an ironic 
rebound effect: retrieval suppression was associated with significantly higher decoding 
accuracies than no-retrieval perceptual baseline trials. This rebound effect suggests that 
participants who later showed less successful forgetting had relapses in controlling unwanted 
memories, particularly towards the end of retrieval suppression (van Schie & Anderson, 
2017). Thus, successful forgetting roots in sustained suppression of individual memories 
during the prolonged cortical reinstatement time window.  
 
Our item-level decoding results of voluntary retrieval (i.e., during Think trials) provides 
further support to the staged model of cued memory recall. To rule out the possibility that 
sustained item-level decoding during retrieval may simply reflect sustained attention devoted 
to individual object cue, we showed that 1) the early (0-500 ms) vs. late (500-3000 ms) 
decoding patterns are characterized by distinct EEG spatial distributions, and 2) only the 500-
3000 ms item-level decoding accuracy predicts retrieval-induced memory facilitation. These 
results suggest that while the early decoding pattern reflects the perceptual process, the late 
decoding pattern reflects the retrieval process. Consistent with these results, both theta and 
alpha power contributed to item-level decoding throughout the entire epoch during voluntary 
retrieval, with an early onset of occipital theta activity followed by parietal-occipital alpha 
activity. Theta and alpha activity have been implicated in perceptual and memory-related 
processes, such that theta may reflect sensory intake (Bastos et al., 2015; Colgin, 2013), and 
alpha may track the neocortex-dependent memory reinstatement process (Staresina et al., 
2019; Staresina & Wimber, 2019). Decoding patterns of Perceptual Baseline trials provided 
clear, additional support for this account: when participants viewed object cues that lacked 
any associated memory, only 0-500 ms occipital theta activity drove significant item-level 
decoding, ruling out any contribution of scene retrieval.  
 
In addition to theta, we found that different retrieval conditions significantly modulated alpha 
power during the extended 500-3000 ms time window. Previous research showed that 
memory reinstatements are tightly associated with alpha oscillations. For example, Fellner et 
al. (2020) reported that alpha power increased during 1000-2000 ms following to-be-
remember cues, which were associated with selective rehearsal (see also Bäuml et al., 2008; 
Hanslmayr et al., 2012; Xie et al., 2020). Consistent with these studies, we found that 
voluntary retrieval enhanced alpha power during the same 1000-2000 ms when memory 
reinstatement would be expected (Figure S1H-M). In contrast, retrieval suppression reduced 
alpha power relative to no-retrieval, and accordingly, alpha-based item-level decoding 
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performance. Critically, alpha-based decoding accuracies of retrieval suppression vs. no-
retrieval predicted subsequent forgetting, highlighting the role of alpha power reduction in 
suppression-induced forgetting. Together, suppression-induced alpha power reduction may 
reflect abolished memory reinstatement process (Hanslmayr et al., 2012; Waldhauser et al., 
2015), which then led to episodic forgetting.  
 
Collectively, we showed that for successful forgetting, top-down retrieval suppression needs 
to be fast and sustained: early enhanced frontal theta disrupted cue-to-memory conversion 
and truncated individual memory traces within the first 500 ms upon seeing the cues, 
preventing the aversive scenes from being fully reinstated in mnemonic awareness. Sustained 
control would then weaken and eventually abolish item-specific cortical EEG patterns during 
500-3000 ms, supported by reduced alpha activity. In contrast, poor deployment of early 
control and relapses during sustained control resulted in less successful voluntary forgetting. 
By offering insights into the precise timing and neural dynamics of retrieval suppression in 
modulating individual memories, our results could inform future research on when and how 
to intervene along the information processing stream to help people forget unwanted 
memories and have a spotless mind.  
 
Methods 
Participants 
41 participants (mean age = 19.57, age range: 18-23 years, 26 females) were recruited from 
The University of Hong Kong. One participant was excluded due to non-compliance of task 
instructions (details see Materials and Procedure). Ethical approval was obtained from the 
Human Research Ethics Committee of The University of Hong Kong. 
 
Materials and Procedure 
We used 42 object-scene picture pairs from Küpper et al. (2014). Scenes depict aversive 
contents such as natural disasters, assault, injury, etc. Each object resembled an item from its 
paired negative scene, thus establishing naturalistic and strong associations. Six pairs were 
used for instruction and practice purposes. The remaining 36 pairs were equally divided into 
3 sets, with 12 pairs in each of three following conditions: Think, No-Think, and Baseline. 
Picture pairs used in the three conditions were matched on valence and arousal, and were 
counterbalanced across participants. Another 6 objects without any paired scenes were used 
as Perceptual Baseline trials, which did not involve any memory retrieval. Participants 
completed the following sessions in order: Encoding, Think/No-think (TNT) and Cued Recall. 
Participants also completed a 3-item, instruction compliance questionnaire at the end of the 
TNT session (see the OSF for the questionnaire).  
 
Encoding: Participants were presented with 42 object-scene pairings, plus 6 objects from 
Perceptual Baseline. Each object-scene pair was presented on an LCD monitor for 6 s with an 
inter-trial-interval (ITI) of 1 s. Participants were instructed to pay attention to all the details of 
each scene, and to associate the left-sided object and the right-sided scene. They were then 
given a test-feedback session, in which each object was presented up to 4 s until participants 
pressed a button indicating whether they could recall the associated scene or not. If 
participants gave a ‘yes’ response, they were presented with three scenes from the learning 
phase and needed to identify the correct one within another 4 s. Regardless of accuracy, the 
correct pairing would be presented again for 2.5 s. This test-feedback cycle repeated until 
participants reached 60% accuracy. Twenty-six participants reached this criterion in the first 
cycle, 13 participants in two, and 1 in three. Following the test-feedback cycles, participants 
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were given a recognition-without-feedback test, to assess their memory before the TNT 
session. Items from different conditions were encoded at comparable levels (ps > .104). 
 
TNT: Participants were presented with 24 objects from the 36 object-scene pairings, with 12 
objects in each of the Think or No-think conditions, respectively. The remaining 12 objects 
were not shown in the TNT and would be in the Baseline condition. These 24 objects were 
presented in either yellow- or blue-colored frames indicating think and no-think conditions, 
with colors counterbalanced across participants. The 6 objects (without any pairing scenes) 
were presented in white-colored frames and served as Perceptual Baseline trials. Thus, 30 
unique objects were shown in the TNT session. Each object was presented for 10 times, 
resulting in a total of 300 trials. Each trial began with a fixation cross (2-3s), followed by the 
object in a colored frame for 3s. The ITI was 1 s.  
 
For Think trials, participants were instructed to try their best to think about the objects’ 
associated scenes in detail, and to keep the scenes in mind while the objects remained on the 
monitor. For No-Think trials, participants were given direct-suppression instructions: they 
were told to pay full attention to the objects while refraining from thinking about anything. If 
any thoughts or memories other than the objects come to mind, they need to try their best to 
push the intruding thoughts/memories out of their mind and re-focus on the objects. 
Participants were also prohibited from using any thought substitution strategies (i.e., thinking 
about a different scene). For Perceptual Baseline trials, participants were simply instructed to 
focus on the object.  
 
Cued Recall: Following the TNT session, participants were presented with each of the 36 
objects from Think, No-Think and Baseline conditions. Each object was presented at the 
center of the monitor, alongside a beep sound prompting participants to verbally describe the 
associated scenes within 15 s. The ITI was 3 s. Participants’ verbal descriptions were 
recorded for later scoring. Perceptual Baseline objects were not shown in this recall test 
because they were not paired up with any scenes. 
 
Cued Recall Analyses: Two trained raters who were blind to experimental conditions coded 
each of the verbal descriptions along three dimensions following the criteria used in Küpper 
et al. (2014), namely Identification, Gist and Detail. Each measure focused on different 
aspects of memories: Identification referred to whether the verbal description was clear 
enough to correctly identify the unique scene, and was scored as 1 or 0. Inconsistent ratings 
were resolved by averaging 0 and 1, resulting in a score of 0.5. Gist measured whether 
participants could correctly describe the scene’s main themes, and was scored on how many 
correct gists were given. Detail measured how many correct meaningful segments were 
provided during the verbal description, and was scored on the number of details. Interrater 
agreement for the scoring of all three measures was high: Identification r = 0.71, Gist r = 0.90, 
Detail r = 0.86.  
 
EEG Recording and Preprocessing: Continuous EEGs were recorded during the TNT 
session using ANT Neuro eego with a 500 Hz sampling rate (ANT B.V., Enschede, The 
Netherlands), from 64-channel ANT Neuro Waveguard caps with electrodes positioned 
according to the 10-5 system. The AFz served as the ground and CPz was used as the online 
reference. Electrode impedances were kept below 20 kilo-ohms before recording. Eye 
movements were monitored through EOG channels. 
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Raw EEG data were preprocessed in MATLAB using EEGlab Toolbox (Delorme & Makeig, 
2004) and ERPlab Toolbox (Lopez-Calderon & Luck, 2014): data were first downsampled to 
250 Hz, and were band-passed from 0.1 to 60 Hz, followed by a notch filter of 50Hz to 
remove line noise. Bad channels were identified via visual inspection, and were removed and 
interpolated before re-referencing to common averages. Continuous EEG data were 
segmented into -1000 to 3500 ms epochs relative to the cue onset, and baseline corrected 
using -500 to 0 ms as baseline period. Next, independent component analyses (ICAs) were 
implemented to remove eye blinks and muscle artifacts. Epochs with remaining artifacts 
(exceeding ± 100 µV) were rejected. The numbers of accepted epochs used in all following 
analyses were comparable across Think (Mean ± SD, 100.33 ± 11.57) and No-think (103.18 ± 
10.61) conditions. Valid trials number in Perceptual Baseline is 56.58 ± 3.23. All EEG 
analyses were based on 61 electrodes, excluding EOG, M1, M2, AFz (ground) and CPz 
(online reference). 
 
Condition-/Item-level Decoding with Time Domain EEG: Decoding analyses were 
conducted in MATLAB using scripts adapted from (Bae & Luck, 2018), which used a 
support vector machine (SVM) and error-correcting output codes (ECOC). The ECOC model 
combined results from several binary classifiers for prediction output in multiclass 
classification. 
 
In condition-level decoding, we used one-vs-one SVMs to perform pairwise decoding among 
the three conditions (Think vs. Perceptual Baseline, No-Think vs. Perceptual Baseline, and 
Think vs. No-Think). For Think vs. Perceptual Baseline and No-Think vs. Perceptual 
Baseline condition-level decoding, we first subsampled trials in T/NT to be comparable with 
Perceptual Baseline so that each condition had about 56 trials. We next divided EEG trials 
from each condition into 3 equal sets and averaged EEG epochs within each set into sub-
ERPs to improve signal-to-noise ratio. The decoding was achieved within each participant 
from -500 to 3000 ms using these sub-ERPs in a 3-fold cross validation: each time 2 of the 3 
sub-ERPs are used as training dataset with the condition labels, and the remaining one was 
used as testing dataset. After splitting training and testing datasets, sub-ERPs were both 
normalized using the mean and standard deviation of training dataset to remove ERP-related 
activity. This process was conducted on every 20 ms time point (subsampled to 50 Hz), and 
repeated for 10 iterations. We were comparing condition-level decoding accuracy against its 
chance level, 50%, given two conditions were involved in each pairwise decoding. 
 
For item-level decoding, we used one-vs-all SVMs to decode each individual stimulus within 
each condition, separately. Decoding procedures were the same as condition-level decoding. 
Thus, the trial numbers of each stimulus are first matched to the least one within each 
participant (at most 10 trials, if no trial was rejected). Then, all trials of each stimulus were 
divided into 3 sets before averaging and the 3-fold cross validation. Both training dataset and 
testing dataset were normalized using the mean and standard deviation of training dataset. 
The decoding process was conducted on every 20 ms time point and for 10 iterations (results 
remained the same for up to 100 iterations, see supplementary Figure S3G). For Think and 
No-Think conditions, the chance levels were 1/12 (8.33%) given that there were 12 unique 
stimuli in each of these two conditions. For PERCEPTUAL BASELINE trials, the chance 
level was 1/6 (16.67%). 
 
Given we have different item numbers in Perceptual Baseline (6 items) and Think/No-Think 
(12 items), in order to directly compare the decoding accuracy in Think or No-Think with 
Perceptual Baseline, we conducted a resampled decoding in Think and No-Think, 
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respectively. The resampled decoding is similar to the normal decoding, except that during 
each iteration we randomly selected 6 out of all 12 items before dividing and averaging into 3 
sets. Considering the randomization used only half of the items, we increased iterations to 20 
times. An item-level decoding with 20-iterations was also rerun in Perceptual Baseline, to be 
compared with the resampled decoding. 
 
Condition-/Item-level Decoding with Time-Frequency Domain EEG: Time domain EEG 
was wavelet transformed into time-frequency domain data in Fieldtrip Toolbox (Oostenveld 
et al., 2011) before decoding. Frequencies of interest increased logarithmically from 2.8 Hz 
to 30 Hz, resulting in 22 frequency bins. Wavelet cycles increased linearly along with 
frequencies from 3 to 7. Then the decoding was conducted for each frequency bin data across 
time in the same procedure as described in Channel-/Item-level Decoding with Time 
Domain EEG (as if treating each frequency bin data as a time domain data).  
 
Channel Searchlight Decoding: Both condition- and item-level decoding used EEGs from 
all 61 channels as features. To examine which electrodes contributed the most to the 
decoding accuracy, we conducted a channel searchlight decoding using subsets of the 61 
channels as features (Treder, 2020).  
 
Specifically, we first divided all channels into 61 neighbourhoods, centering each channel 
according to its location (conducted in Fieldtrip Toolbox Oostenveld et al. (2011) via 
ft_prepare_neighbours() function using ‘triangulation’ method). Immediately neighbouring 
channels were clustered together, resulting in 6.39±1.50 channel neighbours for each channel 
(with overlaps). Then the time domain EEG was averaged on time windows of interest, i.e., 
averaged on 0-500 ms, 500-3,000 ms, etc., to inspect the decoding topographical distribution 
on different time windows. The rest of the procedure was the same as time domain EEG 
decoding: we divided data into 3 sets and averaged within each set before splitting training 
and testing datasets; then we normalized them using mean and standard deviation of training 
sets. Finally, the decoding was conducted with a 3-fold cross validation and 10 iterations. 
Theta/alpha searchlight was conducted in the same way as time-domain searchlight, after 
averaging time-frequency power on respective oscillation range (theta: 4-8 Hz; alpha: 9-12 
Hz). 
 
Time Frequency Analyses: Six electrode clusters were selected for Time Frequency 
analyses: left parietal (CP3/5, P3/5), parietal (Pz, CP1/2, P1/2), right parietal (CP2/4, P2/4), 
frontocentral (FC1/2, C1/2, FCz, Cz), left prefrontal (AF3, F3/5) and right prefrontal (AF4, 
F4/6).  
 
Time frequency transformation was performed using the same parameters as in decoding 
analyses in Fieldtrip (Oostenveld et al., 2011), with additional decibel baseline normalization 
using power on -500 to -200 ms. We focus on the early theta power change on 200-400 ms 
which is indicator of inhibitory control (Cavanagh & Frank, 2014; Nigbur et al., 2011), and 
theta and alpha power change on a post hoc late time window (500-3000 ms) following 
condition level decoding results. 
 
Correlation Analyses: We calculated Spearman’s Rho for all correlations. In condition-level 
decoding, memory of Think and No-think was normalized by subtracting and then divided by 
Baseline memory, then correlated with time domain condition-level decoding accuracy on 
500-3000 ms. To investigate the time course of these correlations, Spearman’s Rho was 
calculated at each time point. For condition-level alpha decoding, we investigated correlation 
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between memory and decoding accuracy on 1,000-2,000 ms considering the findings from 
Fellner et al. (2020).  
 
In item-level time-domain decoding, we investigated the correlations between decoding 
accuracy and absolute memory score of the same condition, on 0-500 ms and 500-3000 ms, 
respectively. To link item-level decoding with condition level inhibitory control theta power 
change, we calculated correlation between decoding accuracy difference between Think and 
No-Think on 420-600 ms, and theta power difference between Think and No-Think on 200-
400 ms. 
 
In the High- vs. Low-Suppression Grouping correlation, we calculated correlation between 
decoding accuracy on 280-420 ms and No-Think minus Baseline Detail memory score, to be 
consistent with the grouping measure.  
 
High- vs. Low-Suppression Grouping: We divided 40 participants into High- vs. Low-
Suppression Groups based on their No-Think-minus-Baseline Detail scores ranking, and 
median split into 20 participants in each group. Detail measure was used because it captured 
both variability and suppression effect compared to Identification (limited variability since it 
was a dichotomous measure) and Gist (did not show suppression effect). The pre-TNT 
learning was not different between Think and No-Think in neither group (ps > .116). 
 
Statistical Analysis 
Behavioral Analyses: We conducted separate one-way ANOVAs with three within-subject 
conditions (Think vs. No-Think vs. Baseline) on the percentage of Identification, percentage 
of correctly recalled Gist, and number of correctly recalled Details. We then examined the 
suppression-induced forgetting effect by conducting planned pairwise t test between No-think 
and Baseline, with a negative difference (i.e., when subtracting Baseline scores from No-
think scores) being indicative of forgetting due to retrieval suppression, below the baseline 
level. 
 
We report findings with p < .05 as significant. Within-subject analyses of variance 
(ANOVAs) are reported with Greenhouse-Geisser corrected p-values whenever the 
assumption of sphericity was violated. In terms of effect sizes, we report Cohen’s dz given 
our within-subjects design (Lakens, 2013). 
 
Condition-/Item-level Decoding with Time Domain EEG: Following the statistical 
analysis procedure reported by (Bae & Luck, 2018), decoding accuracy at each time point (on 
0-3000 ms) was compared to chance level by one-tailed paired t test. Multiple comparisons 
were controlled by non-parametric cluster-based Monte-Carlo procedure. Specifically, the 
null distribution was constructed by assigning trial level classification results to random 
classes (as if the classifier has no knowledge of actual information), and then timepoint-by-
timepoint t-tests were performed to obtain a maximum summed t-value of continuous 
significant time cluster, which then repeated for 1,000 times. The resulting null distribution 
contained 1,000 summed t-values, which would be the distribution of the cluster summed ts 
when there is no true difference between decoding results and chance level. Both the cluster 
alpha and the alpha to obtain critical values from the permutation null distribution were set at 
0.05 (on the positive tail, one-tail against chance). 
 
The between-condition comparison of decoding accuracy along time were similar, except that 
the null distribution was constructed by randomly assigning condition labels to trial level 
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classification results with two-tail repeated measure t-test and clusters were obtained on 
positive/negative tails, respectively. Thus, the critical values from the permutation null 
distribution were at 2.5% on the negative clusters null distribution and 97.5% on the positive 
clusters null distribution. 
 
Channel Searchlight Decoding: We compared channel searchlight topographies between 
item-level decoding in Think and No-think with a two-tailed paired-sample t test at each 
channel. The multiple comparisons were controlled by cluster correction of channel 
neighbour clusters in Fieldtrip (Oostenveld et al., 2011). The neighborhood was defined in 
the exact same way as the channel searchlight analysis. Cluster alpha was set at 0.05. 
Observed clusters were compared to null distribution on positive/negative tails respectively. 
 
Channel-/Item-level Decoding with Time-Frequency Domain EEG: The statistical 
analyses for time-frequency domain decoding were similar to those of time domain decoding, 
except that here clusters were calculated in a 2-D matrix instead of on a 1-D time axis, and 
the cluster alpha was set at 0.05. Also, observed clusters were compared to the null 
distribution clusters of the same rankings. The statistical comparison of a single time-
frequency decoding was performed against chance level (one-tailed), and that of the 
difference between two time-frequency decoding was performed against 0 (two-tailed). Theta 
(4-8 Hz) and alpha (9-12 Hz) oscillations decoding were assessed after averaging across the 
corresponding frequency bin. 
 
Time Frequency Analyses: The early theta power at each electrode was compared between 
No-Think and Perceptual Baseline after averaging on 200-400 ms across 4 to 8 Hz, and then 
cluster corrected according to electrode positions in Fieldtrip (Oostenveld et al., 2011). The 
suppression-associated reduction of theta and alpha power on later time window was 
examined by averaging on 500-3000 ms across 4-8 Hz (theta) and 9-12 Hz (alpha), and then 
compared between No-Think and Think/Perceptual Baseline with neighbour cluster 
correction in Fieldtrip. The channel neighbours were defined in the same way as in channel 
searchlight analysis. 
 
Correlation Analyses: The cluster correction for correlation time course was performed in 
this way: we first transformed Spearman’s Rho back to t-values to obtain the observed time-
course clustered t-values and a null distribution. The null distribution was obtained by 
randomizing labels of the two variables of interest before calculating the Spearman’s Rho and 
corresponding t value. The cluster alpha was set as 0.05, and the observed clusters were 
calculated for positive and negative clusters respectively. The critical values of null 
distribution were at the 2.5% on both tails. The comparison between 2 correlation coefficients 
was conducted through a two-sided z test controlling for dependence (Lenhard & Lenhard, 
2014). 
 
High- vs. Low-Suppression Groups Comparison: Decoding accuracy at each time point on 
0-3000 ms was compared between High- and Low suppression groups using two-tail 
independent t-test. The null distribution was constructed by randomly assigning group labels 
to each subject before by-timepoint t-test, to obtain the max summed-t of continuous 
significant time cluster when group labels are randomized, which repeated for 10,000 times. 
The resulting 10,000 summed-t values would be the null distribution when no true difference 
exists between the two groups. Critical values from the permutation null distribution were at 
2.5% on the negative clusters null distribution and 97.5% on the positive clusters null 
distribution (two-tail, αs = 0.05). 
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