PSYC2071: Judgement & decision making
Course Outline (2018-9 Autumn Semester)

Lecture: Thursday 16:30 – 18:20; CPD 3.01

Contact details

Instructor: Gilad (Fili) Feldman
Office: Jockey Club Tower 6.22
Hours: Wednesday, 15:30-16:30 (email first)
Email: gfeldman@hku.hk

Tutor: Boley Cheng
Office: Jockey Club Tower 6.18
Hours: Tuesdays, 2:30-3:30pm (email first)
Email: boleyc@hku.hk

Tutor: Jiaxin (Bill) Shi
Office: Jockey Club Tower 6.49
Hours: Tuesdays, 1:30-2:30pm (email first)
Email: billshi@connect.hku.hk

Course Objectives

The purpose of this course is for students to gain an in-depth academic understanding of psychological science focusing on the domain of judgment and decision-making.

After taking this course, students will:

1. Gain an academic overview of main research themes in judgment and decision-making.
2. Summarize, analyze, reflect, and apply classic experiments and findings in decision-making.
3. Articulate process and findings, both orally and in writing, with discussion of evidence and its implications for the academic field and in everyday life.
4. Experience and lead, hands-on, high-quality academic research using the most recent methodological advances in psychological science conducting a pre-registered replication and extension of a classic study in social cognition / judgment and decision-making.
 a. In-depth analysis of a published academic article
 b. Assessment of experimental scientific methods and evidence (effect-size, confidence-intervals, power, and p-values)
 c. Pre-registration plan
 d. Data analysis
 e. Pre-registered replication report (as an academic submission)
Learning Outcomes

1. Gain knowledge and reflect on classic academic findings in judgment and decision-making. Identify and describe common judgment and decision heuristics and biases.

2. Gain an overall broad understanding of several research streams in judgment and decision-making. Understand and explain the heuristics and biases approach to human judgment and decision making.

3. Develop ability to contemplate and analyze judgment and decision-making academic research.

4. Exercise critical mindset and basic skills in interpreting and communicating research reports.

5. Understand and conduct a pre-registered replication and extension of simple classic experiments in judgment and decision-making.

6. Coordinate and cooperate with other students to achieve common academic goals and successfully conclude academic projects.

7. Write high-quality publishable research articles and communicate research findings in presentations.

Reasons why you should NOT take this course

1. If you dislike or are skeptical about psychology, you may not like this class.

2. If you're looking for an easy course. Be warned, this is a very demanding course, and we will work under very strict criteria of establishing scientific evidence requiring high-level of scientific understanding and thinking.

3. If you think psychology is a "soft science" or "intuitive" and/or that psychology classes are "easy classes", then you're in for a surprise. This will require a scientific mind and adhering to the most up-to-date scientific standards.

4. If you do not care about academic research or are hesitant or reluctant to conduct academic research. This is an advanced research undergraduate course that aims to introduce you to the scientific understanding of judgment and decision making, and this will involve conducting a state-of-the-art research project. We will provide you with resources and examples, and aid you in the project, but it will depend on your ability to do research to get an in-depth understanding of the human mind from a critical academic perspective.

5. If you prefer passive learning, if you do not like self-study, or if you expect learning to originate only from the instructor. I will guide you, provide support and assistance, but learning in this course is student focused and student driven. It will depend on your conducting self-study and pushing yourself to master needed skills, fully engage in academic thinking, and do the required work.

6. If you need high structure and do not tolerate uncertainty. There will be uncertainty in this course, and things will not always be clear upfront. It will be up to you to raise questions, seek help, and overcome difficulties as they arise. I will do whatever I can
to support you, but I am joining you in this journey with no certainty of how this journey will turn out or what the outcome will be.

7. If you dislike quantitative research and have an aversion to statistics. Academic research in psychology requires basic understanding of statistics and I will assume that you have mastered the basics of statistics and are capable of mastering further needed skills given guidance.

Things to consider about the course

1. To give you a heads-up, for you to determine if there's a fit and to address any possible future misunderstandings - this is a very demanding research-focused course requiring in-depth readings on judgment and decision making in the domain of social psychology with a very comprehensive academic research course project.

2. If you took other courses about judgment and decision making (e.g., CCST9027 "Science of Irrational Thinking"), you may find some of the course context repeating some of the themes and experiments covered. Since this is an advanced class, we aim to build on and extend beyond that course, but some content is likely to overlap.

Assessment Components

1. Individual projects: 50%
 a. Qualtrics survey: 5%
 b. Article analysis: 5%
 c. Pre-registration: 10%
 d. Data analysis: 10%
 e. Final report: 20%
2. Pair final project presentations: 10%
3. Peer review: 10%
 a. Pre-registration + Qualtrics: 5%
 b. Final report: 5%
4. Commentary on readings: 10%
5. Pair in-class exercise presentation: 20%
 a. Class presentation + discussion: 10%
 b. (Google Doc) summary of activity: 10%
Tentative Schedule

<table>
<thead>
<tr>
<th>Cl</th>
<th>Date</th>
<th>Topic</th>
<th>TA</th>
<th>Tasks due end of week (Sunday 11:59pm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>06/09</td>
<td>Judgment & Decision making: Introduction lecture #1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>13/09</td>
<td>Judgment & Decision making: Introduction lecture #2</td>
<td>Register for HKU Qualtrics account hkupsysch.qualtrics.com</td>
<td>Complete quiz on the syllabus</td>
</tr>
<tr>
<td>3</td>
<td>20/09</td>
<td>Asymmetries (Time / self-other / outcome bias)</td>
<td>T1 Qualtrics survey</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>27/09</td>
<td>Choices</td>
<td>T2 Article analysis</td>
<td>Deadline 30/09 11:59pm: Qualtrics survey</td>
</tr>
<tr>
<td>5</td>
<td>04/10</td>
<td>Intuitive statistics</td>
<td>T2 Article analysis</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>11/10</td>
<td>Valuations (price, money, costs, etc.)</td>
<td>T3 Pre-registration</td>
<td>Deadline 07/10 11:59pm: Article analysis</td>
</tr>
<tr>
<td>7</td>
<td>25/10</td>
<td>Hindsight/prediction</td>
<td></td>
<td>Deadline 28/10 11:59pm:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Peer review of pre-registration (includes article analysis and Qualtrics survey)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Participate in class survey pre-test</td>
</tr>
<tr>
<td>8</td>
<td>01/11</td>
<td>Information processing</td>
<td>T4 Data analysis</td>
<td>Deadline 04/11 11:59pm: Revised pre-registration (includes article analysis and Qualtrics survey)</td>
</tr>
<tr>
<td>9</td>
<td>08/11</td>
<td>Emotions & Counterfactuals</td>
<td>T5 Writing APA style replication reports</td>
<td>(Students receive data collection results)</td>
</tr>
<tr>
<td>10</td>
<td>15/11</td>
<td>Presentations + Academic writings and journal submissions</td>
<td></td>
<td>Deadline 18/11 11:59pm: Data analysis</td>
</tr>
<tr>
<td>11</td>
<td>22/11</td>
<td>Presentations</td>
<td></td>
<td>Deadline 25/11 11:59pm: Submission of final report</td>
</tr>
<tr>
<td>12</td>
<td>29/11</td>
<td>Presentations</td>
<td></td>
<td>Deadline 02/12 11:59pm: Submission of peer review on final report</td>
</tr>
<tr>
<td>06</td>
<td>06/12</td>
<td>No class</td>
<td></td>
<td>Deadline 09/12 11:59pm: Submission of revised final report</td>
</tr>
</tbody>
</table>
Course readings

Readings overview
The readings for this course are classic well-cited readings in the judgment and decision-making literature. Student pairs are randomly assigned to each article. The readings will serve two purposes:

1. They are required readings for the course. Each class we will cover ~3 readings.
 a. In each session you will be asked to read, summarize, and comment on one of the papers in depth and provide and analysis and commentary of the studies in that article that fellow students will replicate.
 b. For each article in each sessions, the assigned student pairs to that article will conduct an in-class exercise and presentation.
2. They are targets for the course pre-registered replication and extension projects. We will, as a course, work together to replicate all of these effects in a rigorous academic research project. Each student pairs will replicate their assigned article separately and independently, and will review each others' work.

Class exercise / presentation
The first two classes during the add-drop period will be demonstrations by the course instructor. Beginning from week #3, the first hour of the two hours sessions will be student led using similar demonstrations conducted by the students for the students. The second part is given by the instructor to offer the broader perspective on the readings and cover topics that would aid students in their course project.

Each article is assigned two students. Each student pair will be in charge of demonstrating the article to the class. The demonstration is meant to be "learning by doing", allowing students to experience things first hand and not just passively absorb information. This will involve conducting the assigned experiment on the students, performing some kind of class activity, or anything else that would be engaging etc.

This means that in every class we'll have ~3 demonstrations of experiments from the readings. The demonstration should take no more than 5 minutes, followed by 5 minutes explaining the effect and the results. Meaning, 10 minutes per experiment, 30 minutes overall.

Design of the class-experiment should be submitted 1 week before the actual class demonstration, with the exception of the 3rd week pair, which can submit by Monday before class.

A week following the presentation, the student pairs will finalize the section in the Google Doc discussing about their article/experiment. They will update any links to materials used in the class exercise handouts and presentations, and will ensure an accurate summary of what was conducted in the class and its implications. The final version of what appears in the Google Doc will be graded.
Collaborative course summary
All students will work on a collaborative Google Doc summarizing all the readings and class activity: https://tinyurl.com/hkupsyc2071summary

First, the students replicating the article will be assigned to read the article they are replicating, but other than that the assignment is random.

Each week, students will read, summarize, and comment on one of the articles for that week. For each article, the Google Doc will have two sections - one collaborative, and one of individual commentaries.

The primary purpose of these assignments is to prepare students for class discussion, and so late submissions will NOT be marked. Short and precise arguments/summaries are expected, and long answers that exceed paragraph/page limit will not be read.

Please make sure that your comment appears on the Google Doc on Wednesday 5:00pm (the day before class).

Collaborative section
All students assigned to that reading will work on the collaborative section together, and contribute important insights regarding their understanding of the article. The pair in-charge of that article will finalize that section to ensure that it is accurate and comprehensive.

Commentary section
Each student assigned to that article is requested to write a commentary piece to share with the other students in the class and especially the replicating pair. The commentary will include two paragraphs:

1. One example of the real-life implications of the findings of the discussed experiment. Contemplate: What does this mean for us? How can this be used in real-life? [One paragraph]
2. A suggestion for 1 extension of the classic experimental design in the article (see replication note for which studies in that article are to be replicated). [One paragraph]

The idea here is for students to reflect on the implications of the readings, and to help our fellow students think of interesting ways in which they can add minor extensions to add to their replications to gain further insights into judgment and decision-making (see section "What is an "extension" to a replication?").

Please write your full name and student ID next to your commentary on the Google Doc.

The commentary should be clear, brief, constructive, and to the point. Should be no longer than 2 paragraphs and half a page overall.

The idea should be original and different than that of other student commentaries, meaning it should come from the student writing the commentary, and not simply from a follow-up paper, but can be inspired by the literature and other readings.
Week #3: Asymmetries (Time / self-other / outcome bias)

 a. Filename: Caruso, Gilbert, & Wilson, 2008 PsycSci Asymmetric valuation of past and future events
 b. Impact 2018: Cited by 141
 c. Replication note: Experiment 1 and 4 together
 d. Summary: People value future events more than equivalent events in the equidistant past.

 a. Filename: Miller & McFarland, 1987 JPSP Pluralistic ignorance-similarity is interpreted as dissimilarity
 b. Impact 2018: Cited by 402
 c. Replication note: Experiment 1
 d. Summary: Individuals infer that the identical actions of the self and others reflect different internal states

 a. Filename: Baron & Hershey, 1988 JPSP Outcome bias in decision evaluation
 b. Impact 2018: Cited by 779
 c. Replication note: Experiment 1, Cases 1 to 4.
 i. Note: The experiment is originally a within-subject design. We'll adapt that to a between-subject design. Please make sure you include the question to participants of whether outcome should be taken into account when evaluating the decision after they make the evaluations.
 d. Summary: Outcomes affect evaluations of decision or decision-maker. People rate decision as better when the outcome of the option not chosen turned out poorly than when it turned out well

Week #4: Choices

 a. Filename: Shafir 1993 M&C Choosing versus rejecting some options are both better & worse
 b. Impact 2018: Cited by 595
 c. Replication note: All problems in one experiment, participants randomized to condition in each problem separately each time
 d. Summary: Positive and negative dimensions of options (their pros and cons) loom larger when one is choosing and when one is rejecting, respectively.

 a. Filename: Hsee 1998 JBDM Less is better - low-value valued more than high-value
 b. Impact 2018: Cited by 364
 c. Replication note: Studies 1, 2, and 4
d. Summary: Sometimes, less is better, meaning that low-value options are valued more highly than high-value options.

 b. Impact 2018: Cited by 633
 c. Replication note: combine both demonstrations into one experiment
 d. Summary: in the presence of uncertainty, people are often reluctant to think through the implications of each outcome and, as a result, may violate the Sure Thing Principle.

Week #5: Intuitive statistics

 a. Filename: Hamill, Wilson, & Nisbett 1980 JPSP Insensitivity to sample bias - Generalizing from atypical cases
 b. Impact 2018: Cited by 404
 c. Replication note: Study 1.
 i. The original study hypothesized a null (finding no differences). In such a case we’ll hypothesize effect size d < 0.20.
 d. Summary: People do not take into account the representativeness of a sample before generalizing from the sample to a population.

 a. Filename: Schwarz et al, 1991 SC Base rates, representativeness, and logic - contextual relevance of irrelevant information
 b. Impact 2018: Cited by 271
 c. Replication note: Experiment 1
 d. Summary: People try to make sense of presented information even if it's useless.

 a. Filename: Mellers, Hertwig, & Kahneman, 2001 PsycSci Do frequency representations eliminate conjunction effects
 b. Impact 2018: Cited by 408
 c. Replication note: Experiment 1 with both Linda and James
 d. Summary: Addressing the dispute between Kahneman and Hertwig regarding the conjunction effects.

Week #6: Valuations (price, money, costs, etc.)

 a. Filename: Shafir, Diamond, & Tversky, 1997 QJE Money illusion
 b. Impact 2018: Cited by 922
c. Replication note: Problems 1-4

d. Summary: The "money illusion" effect refers to a tendency to think in terms of nominal rather than real monetary values.

 a. Filename: Staw 1976 OBHDP escalating commitment to a chosen course of action
 b. Impact 2018: Cited by 2166
 c. Replication note: Study 1 (there is only one study)
 d. Summary: One of the first demonstrations of the escalation of commitment.

 a. Filename: Kruger etal, 2004 JESP Effort heuristic
 b. Impact 2018: Cited by 203
 c. Replication note: Combine Experiments 1-2 into one experiment based on the design of Experiment 1, each participant completing the experiments in a between-subject design.
 d. Summary: Effort is used as a heuristic for quality

Week #7: Hindsight/prediction

 a. Filename: Slovic & Fischhoff, 1977 JEPHPP Experimental surprises
 b. Impact 2018: Cited by 492
 c. Replication note: Experiment 1 only
 d. Summary: Hindsight bias effects occur when people evaluate the predictability of scientific results.

 a. Filename: Fischhoff 1975 JEPHPP Hindsight bias
 b. Impact 2018: Cited by 2625
 c. Replication note: Experiment 2, which is stronger evidence
 d. Summary: Outcome knowledge increases the postdicted likelihood of reported events and changes the perceived relevance of event-descriptive data, regardless of the likelihood of the outcome and the truth of the report.

 a. Filename: Hsee & Weber 1997 JEPG fundamental prediction error self–others risk preference
 b. Impact 2018: Cited by 356
 c. Replication note: Experiment 1, focus and conduct power-analysis based on the self-other and gain/loss main-effects.
d. Summary: People predict others to be more risk seeking than themselves in risky choices, regardless of whether the choices were between options with negative outcomes or with positive outcomes.

Week #8: Information processing

 a. Filename: Lichtenstein etal 1978 JEPHLM Judged frequency of lethal events
 b. Impact 2018: Cited by 1727
 c. Replication note: Experiment 3
 d. Summary: People misjudge the frequency of death from various causes exhibiting a systematically biased subjective scale of frequency

 a. Filename: Bastardi & Shafir 1998 JPSP Pursuit and misuse of useless information
 b. Impact 2018: Cited by 186
 c. Replication note: Problems 1 to 3 combined together in one experiment
 d. Summary: Decision makers often pursue non-instrumental information—information that appears relevant but, if simply available, would have no impact on choice.

 b. Impact 2018: Cited by 704
 c. Replication note:
 d. Summary: The origins of insufficient adjustment, with evidence for adjustment-based anchoring biases, but that adjustments from self-generated anchor values tends to be insufficient.

Week #9: Emotions & Counterfactuals

 a. Filename: Zeelenberg etal 1996 OBHDP Consequences of regret aversion-expected feedback on risky decision making
 b. Impact 2018: Cited by 461
 c. Replication note: Experiment 1
 d. Summary: People tend to make regret-minimizing choices (rather than the allegedly more rational risk-minimizing choices).

 a. Filename: Kruger, Wirtz & Miller 2005 JPSP counterfactual thinking first instinct fallacy
 b. Impact 2018: Cited by 136
 c. Replication note: Experiment 2
Summary: Most people believe that they should avoid changing their answer when taking multiple-choice tests. Research, however, suggests that this strategy is ill-founded, and is in part a product of counterfactual “if only...” thinking.

a. Filename: Epstein, Lipson, Holstein, & Huh 1992 JPSP Irrational reactions to negative outcomes Two conceptual systems
b. Impact 2018: Cited by 450
c. Replication note: Combining Study 1 and 2 (randomizing order of display)
d. Summary: If only (IO) counterfactuals effect result of outcomes
Individual projects: Pre-registered replication + extension

Note: Materials for the projects will be shared on Dropbox, see:
https://tinyurl.com/hku2018dropbox

The pre-registered replication project course manual:
https://docs.google.com/document/d/11CA_Q1Gxe2AsS9nsu3dSDILVXPwjAiSu3Hm09VGHIPo/edit?usp=sharing

Collaborative course summary with summary of articles and student suggestions for extensions: https://tinyurl.com/hkupsyc2071summary

Students will conduct pre-registered replication and extension of classic findings in judgment and decision-making. Students will be randomly assigned an experiment in a classic article and will follow a structured procedure to attempt a replication with a simple extension.

Each classic article will be the target replication article for two students, who will work independently on the same article without any information-sharing or collaboration. This method will be used to educate students about different perspectives on conducting replication and analysis of the same article, and the two students will peer review one another's work, for both the pre-registration (with analysis and Qualtrics survey), and the final report, and will use the process to improve on their own work. The idea is not to have identical outputs, but for each of the students to do the best they can on their own and then compare their own approach to that by the other student.

The students will be responsible for designing a replication Qualtrics survey, analyzing the article, writing the pre-registration plan, conducting the data analysis, writing a final report, and presenting their findings.

The instructor will conduct the data collection for the students online using Amazon Mechanical Turk, and will provide the students with the finalized dataset for analysis.
Project process outline

What is an "extension" to a replication?

Projects are expected to extend the classic replications by adding 1 simple extension to the replication studies to add additional insights that go beyond the original article.

This must involve one of the following types of extensions:

1. **Additional dependent variables (DV):** The added dependent variables will be either about evaluations/attributions/judgments regarding the scenarios/vignettes presented or present participants with a choice related to the presented scenario.

2. **Additional well-known and validated individual difference scale** at the beginning of the survey (e.g., belief in free will, Rakos et al., 2008) as predictors of the effect (independent variables; IV). There should be a clear reasonable theoretical reason to expect a link between the suggested individual differences as an IV and the effects tested as the DV.

3. **Additional condition(s) that make slight changes to the scenario presented:** The added conditions are anticipated to pose no harm to participants going beyond the replication materials. For example, adding a control/neutral condition to a replication in which the original experimental design did not include a control/neutral conditions. Please note that this type of extension significantly increases required sample size and so should aim for minimum added conditions.

Important: Added extensions must pose **no harm** to participants going beyond the replication materials.
Sharing and open science

One of the core elements of good science is openness, transparency, and community. By opening up our research in terms of process, materials, data, analysis, and conclusions, and by sharing our thought process with others in the scientific community, we are promoting learning and cooperation and we increase the chances of conducting high-quality research. Some researchers, and possibly students, may feel reluctant to share their outputs, either because they feel shy, lack confidence, or are possessive of their own materials. In our projects, I ask that you join me in overcoming this mentality in the name of science and learning. By opening up and sharing what we do, we can help each other learn and maximize the potential of our projects.

You will be asked to share with others everything that you do. First, with your fellow students, and finally with the rest of the academic community. The TAs and instructor will do their best to work together with you to result in the highest quality outputs.

Academic journal submission and coauthorship

Our goal with this project is to share our insights with the academic community. The formalized way of doing that is summarizing the findings in a manuscript, publishing this as a pre-print, and submitting that as coauthored work to a journal for peer-review. We will aim your projects to become a journal submission to publicize the results of your hard-work. Unless there are unexpected issues, the plan is for all of the student work in this course to be submitted as an academic manuscript, meaning that - by default - you will be coauthors, as determined by the instructors based on level of contribution. You may decide not to join as coauthors or not to have your work included in a journal submission, but in such a case you are requested to communicate that to the instructor early on and indicate this clearly on your reports.

Meaning, that by taking this course and taking part in this project you agree to have your work shared with the academic community and to be a coauthor on a submission based on your work. If you wish to withdraw from that, then please indicate clearly in your pre-registration submissions, that you do not want to be a coauthor in a journal article submission based on your work or do not wish for your projects to be included in a journal submission.

Pair final project presentations

Each two students working to replicate the same target article will present together at the end of the course. They will integrate insights from their independent projects to give an overall analysis on the replicability of the target article.

Each pair (/3) will have no more than 10 minutes, strictly observed with a timer (I will stop you when time is up, regardless of whether you're done or not). There will be no time for questions from the audience, but I will either comment, ask a question, or add something. Both students need to have equal time, I strongly recommend you rehearse this and make sure timing and flow is right, and that no one person is over-dominant or unheard.

The presentation should include:

1. Very brief overview of the original article main hypothesis, experimental design of the main effect of interest, and findings regarding the main hypothesis. Do try and
make this visually attractive and interesting, this is your one chance to explain your article to your audience (suggested time - 2 min)

2. You should briefly mention the calculated effect-size (with confidence intervals), power-analysis, and adjustments made to the experimental design to fit our replication using MTurk. It should mention whether the calculations were the same or different between the students. (suggested time - 1 min)

3. Presentation of your initial data-analysis results. Figures are generally better than stats. I especially like violin plots with boxplots and data juggled dots (see descriptives in JAMOVI library), or at very least plots with confidence interval error bars. (suggested time - 3 min)

4. Summary of comparison between original results in target article and your data on (1) effect-size and confidence intervals, (2) direction of findings, (3) NHST p-values of the main test for the main hypothesis. (suggested time - 1 min)

5. Conclusion: successful/failed/inconclusive replication, why? (suggested time - 1 min)

6. Main challenges and takeaways from the process, things specific about your project that you learned about the original article, pre-registrations and replications process. (suggested time - 2 min)

Additional things to note:

1. This should be a no bla-bla presentation. This needs to be very concise, straight and to the point. There is no time for stories or long explanations. Focus on the bottom line and what's really important, no need for little details, you'll have plenty of space for details in your reports.

2. Anything that you present should include both students' analyses together. If there are differences between the two - the differences should be highlighted clearly.

3. Assume your audience knows nothing about your article and only little statistics. Explain things as if you're talking to laypersons. Avoid jargon as much as possible. Clarity is key.

4. Aim for high-level summary slides with little text. Attractive visual displays are far better than text. Do not place text and read off from your slides. Do not assume audience reads your slides while you talk about something else.

5. Save time. There is NO need to present and/or discuss things you have in common with the rest of the class (replication crisis, sample size, importance of pre-registered replications, what is MTurk, etc.)

Peer review

Student pairs conducting a replication and extension of the same target article will review each other’s work on two time-points, once after submission of the pre-registration, and once for the final report. Peer review will follow academic standards for providing positive constructive feedback on ways to improve, and each of the peer reviews will be graded.

Guidelines:

1. This is NOT a competition, this is joint effort, help each other (and science!) do better. Provide meaningful feedback that would help your colleague achieve full potential.

2. Be constructive. Vague and criticizing comments are not welcome.

3. Always remain positive and supportive.
4. Be clear and comprehensive.
5. When possible: Give them a hand.
6. Yes, you can copy-paste examples/screens from your own work, BUT clearly mark it as your addition. These will need to be changed by the reviewed student.

Data analysis

The data analysis report is the results section of the final report. Data analysis should be done independently without coordination. It is an important part of the scientific process. This is meant so that when you present together you can compare what you did and figure out what went wrong and needs to be corrected. This process needs to be shared transparently.

The data analysis report needs to look like a results section of an APA article. It needs to report the results addressing all the data analysis plan points in the pre-registration following all that you analyzed in the article analysis. Please make sure you follow APA style guidelines for table format and results reporting.

Keep in mind that soon after you're expected to present these results to the entire class in a presentation. Figures should be APA style clear and presentable to audiences so that others who do not know your projects would be able to take a quick look at your figures and understand your data.

Why are we doing pre-registered replications in this course?

If you're not sure you understand the point of conducting pre-registered replication in undergraduate classes, then I suggest a few readings on the topic.

- Teaching Replication in Psychology: A Guide for Teachers and Students (OSF project)
- Collaborative Replications and Education Project (CREP)
Tutorial participation

Tutorials are meant to aid students in their projects. The tutor will give a hands-on demonstration of technical aspects required for a successful completion of the course project.

Students who wish to take advantage of the tutorials are expected to be punctual. If you arrive late, please be polite and respect the others and the tutor by not coming in.

<table>
<thead>
<tr>
<th>Tutorial</th>
<th>Topic</th>
<th>Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Qualtrics survey</td>
<td>Tutorial on how to setup an experiment on Qualtrics using the class-provided template</td>
</tr>
<tr>
<td>2</td>
<td>Article analysis</td>
<td>Tutorial on how to calculate the effect-size, and conduct a power analysis.</td>
</tr>
<tr>
<td>3</td>
<td>Pre-registration</td>
<td>Tutorial on writing pre-registrations.</td>
</tr>
<tr>
<td>4</td>
<td>Data analysis</td>
<td>Tutorial on how to conduct data-analysis of data using Jamovi (jamovi.org). Covering: Descriptives, plotting, T-tests, One-way ANOVA with contrasts.</td>
</tr>
<tr>
<td>5</td>
<td>Writing APA style replication reports</td>
<td>Tutorial going on how to write the final pre-registered replication reports, writing manuscripts in APA style. Will go over guidelines and examples.</td>
</tr>
</tbody>
</table>
Grading details

Article analysis report grading

1. **10% comprehensiveness**: All items in the guidelines have been addressed, following the guidelines for article analysis structure.
2. **10% comprehension**: Understood and analyzed the right things (for example, not confusing p-values for confidence intervals, etc.).
3. **30% transparency, open-science, and clarity**:
 a. Regardless of accuracy, included enough information to make it clear to potential reviewers where values are from and how analysis was conducted.
 b. In-depth information about tools, screen captures, GPower protocols, references to (/copy-paste from) text in the articles, explanations of what the conclusions mean, etc.
 c. The criteria: I should be able to give this as is to another student and the other student will be able to understand what was done, how, and why.
 d. 10% of the 30%: adherence to the replication recipe, addressing replication recipe items
4. **50% accuracy/effort/accuracy**:
 a. Reporting from the article of the method and the results (20% of the 50%)
 b. Effect-size calculations and power-analyses (30% of the 50%)

Facilitator group

Class presentation + discussion: 10%

The class presentation should not be more than 10min and should cover the 4 readings. Since the other students have read at least the two main readings, the aim is not to explain the readings from zero, but to provide a very brief summary of the readings to remind the students, and initiate a discussion. Also, try and provide at least one slide/section that combines and links all the readings together.

<table>
<thead>
<tr>
<th>Main task</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentation</td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td>Clarity</td>
</tr>
<tr>
<td></td>
<td>Understanding</td>
</tr>
<tr>
<td></td>
<td>Comprehensiveness</td>
</tr>
<tr>
<td></td>
<td>Group effort</td>
</tr>
<tr>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effectively lead sub-group discussions</td>
</tr>
<tr>
<td></td>
<td>Communicate group summary to the class</td>
</tr>
</tbody>
</table>

Final group report: 10%

The final report should include the presentation given to class and an integration of the group discussions into one report. Both will be shared with the rest of the class.

The format of the report should follow the rubric provided for the class discussion and should sufficiently elaborate on each point with no more than one paragraph.
The report will be graded based on the following criteria (overall 10%):

1. **Understanding (3%)**: Should reflect an in-depth understanding of the topic of discussion.
2. **Integration (3%)**: Ability to synthesize all the group discussions into a single comprehensive summary.
3. **Clarity and simplicity (4%)**: We are dealing with complicated issues, and the main challenge is to communicate these effectively. Aim for the simplest language possible, so that non-academic audiences (e.g., your parents) would be able to understand your report. This is the biggest most important challenge in this task.

Finally, your report will include a section that will not be shared with others.

1. One paragraph will include self-reflection about the group discussion process, what have you learned as a group regarding leading a discussion about these topics.
2. One optional paragraph will include your recommendations to me on how to improve group discussions in future classes/courses. Try and keep this as constructive as possible.

Due date: One week following class presentation.

Page limit: No longer than 5 pages (double space, 12font), please. Short and concise is strongly encouraged.

Please note: No more than one paragraph per each point. No need to elaborate further, can integrate several points into one paragraph if clear.

Example: using the class #2 example it will be: 1+5+3+3+3 (the rubric from group discussion) and 1+1 (self-reflection and feedback to me) = 17 paragraphs max.
General guidelines

Assignment submission
All assignments will be done with Google Docs. To be clear, all work should be conducted on the Google Doc from the very beginning (rather than imported at the end from a Microsoft Word document). This is to allow automatic backup, versioning, and direct access by instructor, tutors, and group members.

Submit by creating an edit link, adding the link to your document, exporting the document to a Word file and submitting the file on Moodle. Feedback by the instructor will be given directly on the Google Doc.

Assessment feedback and consulting
All written assignments will be marked and returned to students within 3 weeks after submission. Students are welcome to consult the instructor and the tutors anytime during the semester.

Moodle guest account
The Moodle will serve as the course website.
Guest account:
Username: psyc2071_1a_2018_guest
Password: Psyc2071!
Policies

Contacting the instructor

I try and make the syllabus very comprehensive, to address any possible issues, so it is very likely that most of your questions are answered in either the syllabus or the various documents in the Moodle.

Still, if there's something not on the syllabus, feel free to contact me. Before you do, please read "How to Email Your Professor (without being annoying AF)", and use this suggested template (fill in all the areas with numbers):

To: gfeldman@hku.hk (Please do not email instructor in any other emails)
From: myname@student.hku.hk
Subject: PSYC2071 - [full name 1] - [write clear topic title 2]

Dear Fili,

My name is [Enter your full name 3] and I am a student in your PSYC2071 Judgment and Decision Making course. My TA is [Enter TA name 4].

This is the question I have or the help I need [write the question/problem you're facing 5].
I’ve looked in the syllabus and the Moodle and at my notes from class and online and I asked someone else from the class [this is to confirm that you did the minimum required before contacting instructor 6], and I think This Is The Answer [write what you think is the answer 7], but I’m still not sure.

This is the action I would like you to take or the request I have [write your request 8].

Thank you/Best regards [polite sign off 9],
[write your full name again here with LAST NAME IN CAPITAL LETTERS 10]
Requests for reference letters
Please see my policy on reference letters based on undergraduate course work in the following link: http://wiki.mgto.org/doku.php/requesting_a_reference_letter_from_me

English is the official language
The official language of instruction and communication is English. To ensure that everyone feels included, both instructor and students, please refrain from speaking any other language in the classroom. Please address the instructor or the tutors only in English, in and outside of the classroom.

Academic honesty
Academic dishonesty will not be tolerated. Any student who engages in any form of academic dishonesty (e.g., cheating on exams, plagiarism, interfering with grading) will receive a grade of F in this course and will be reported to the Department/Faculty Office/University Disciplinary Committee for further disciplinary action. There will be no exceptions. If you are not sure what constitutes the academic offense of plagiarism, checkout the webpage at http://www.hku.hk/plagiarism

Plagiarism.
A softcopy is required for all written assignments. The softcopy will be checked for plagiarism against a database of articles, books, webpages, and essays submitted by students at HKU and other universities. No credit will be given for an assignment that contains plagiarized materials. Further penalties will be applied. These penalties include a zero mark for participation in course tutorials and a zero mark for the course. Plagiarism will also be reported to your Faculty for further disciplinary action.

Feedback Policy
Students can expect to receive feedback within three weeks after submitting written assignments and taking each exam.

Late assignments
Late assignments will be penalized by 10% of the score for each day following deadline (including Saturday and Sunday). A day late starts one second following submission date/time.